
http://www.swissdutch.ch:6999/

The IBM-DOME microserver demonstrator

Ronald P. Luijten – Data Motion architect

1 May 2013

DOME – Research Phase for SKA (SKA = Square Kilometer Array)

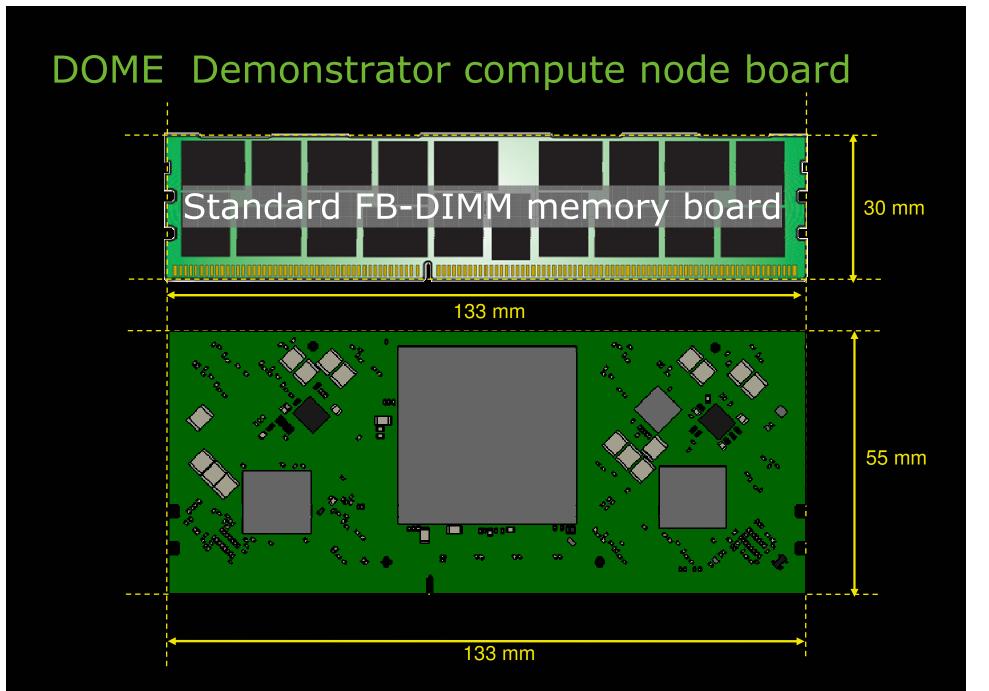
The SKA will be the largest and most sensitive radio telescope ever built.

A single instrument with >10'000's of antennas will become operational in 2024 with frequency ranges 70MHz to 10GHz. This will generate huge amounts of data, which need to be <u>transported</u>, <u>analyzed</u>, <u>stored</u> and <u>retrieved</u> – at <u>very low</u> power and <u>very low</u> cost.

A true Exascale Analytics Challenge!

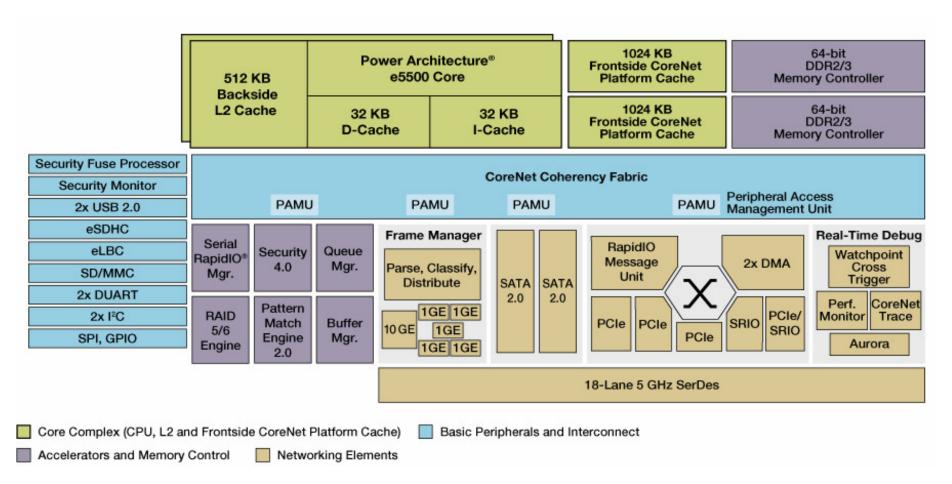
DOME is a research phase project before start of SKA deployment in 2017

- •5 year collaboration between ASTRON (NL) and IBM, started Feb 2012
- •Co-funded by Dutch government and IBM
- •Multi project program including high scale-out and scale-in micro server project

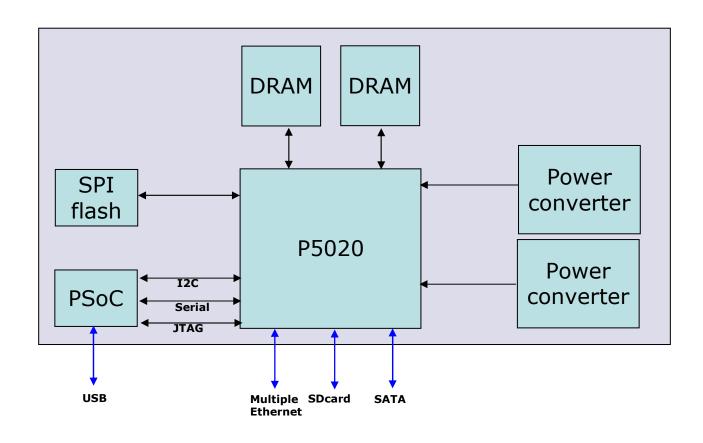


IBM DOME µServer Motivation & Objectives

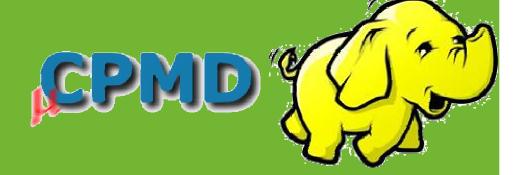
- Create the worlds highest density 64 bit μ-server drawer
 - Useful for both SKA radioastronomy and IBM future capability
 - Very high energy efficiency
- Most efficient cooling using IBM technology (ref: SuperMUC TOP500 pos #4)
- Platform for Business Analytics appliance pre-product research
- "Datacenter in-a-box"
- Must be true 64 bit to enable business applications
 - Currently precludes ARM (currently no 64-bit Silicon available)
 - PPC64 is most compelling based on ecosystem compatibility
- Must run server class OS (SLES11 or RHEL6, or equivalent)
- Must use commodity components only, HW standards, standard SW based
- Must be a true microserver (IBM ZRL definition):
 - integrates the entire compute node motherboard, except DRAM and NOR-boot flash
 - Must integrate Ethernet on 'microserver' SOC.
- This is a research project capability demonstrator only


Compute node interfaces across DIMM connector

- •1 interface SATA
- •5 interfaces Gigabit ethernet
- •2 interfaces 10 Gigabit ethernet
- •SD card interface
- •USB interface
- Various power supply levels



FSL P5020 SoC block diagram


IBM / ASTRON compute node board diagram

And now the Software story...

DB2

And now the Software story...

NOTE

The Freescale 64 bit PowerPC parts are using the latest PPC64 architecture

However, a key difference with IBMs PPC (eg. P7) is that FSL builds

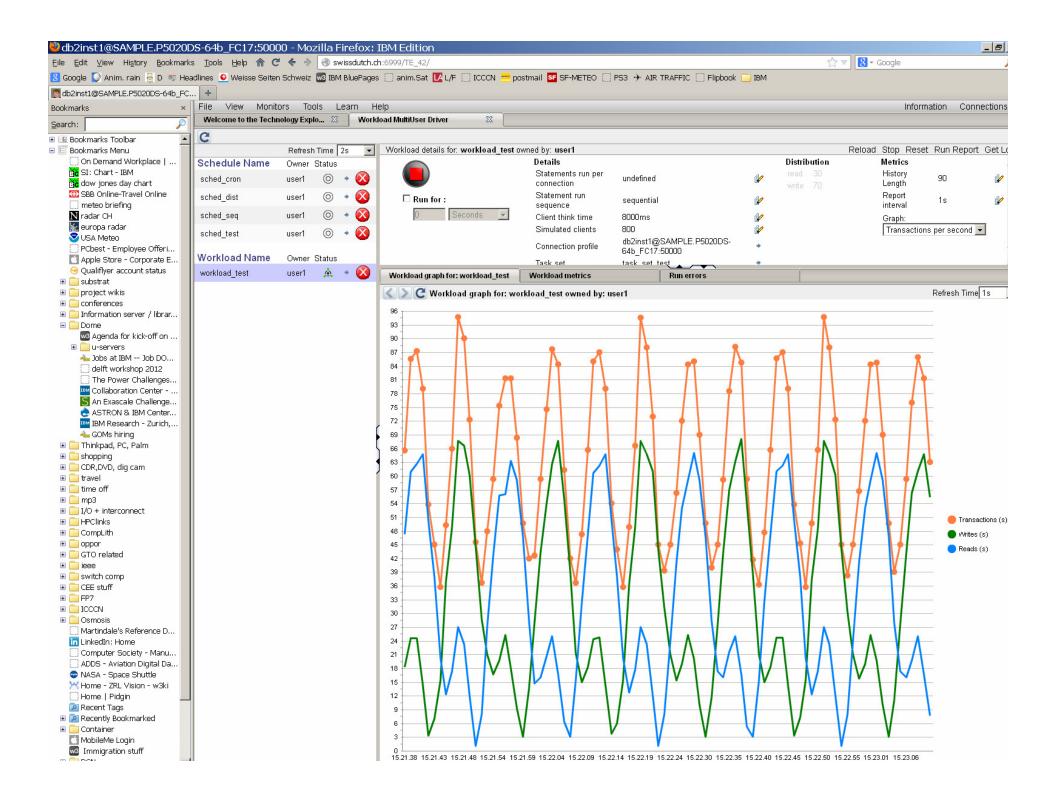
BOOK-E

Which causes SW challenges. The next few foils show how we overcome this

64 bit Fedora 17 on P5020DS

- •Freescale took kernel version 3.0.34 from kernel.org
- Configured and compiled it for P5020
- •Took Fedora user space root FS (thru another PPC platform)
- •Runs 100% OK YUM, Gnome desktop, networking, apache, etc...
 - System up and running > 40 days
 - Java, Python, ...
- This effort took approximately ONE day

IBM DB2 installation on P5020


- Simple install of IBM XL C/C++ runtime (XLC compiler runtime)
- Install libaio
- Simple install of IBM DB2 (express-C, v10.1)
- Some minor configuration adjustments required
- Entire process only took a few hours -- no compilation was needed
- Demo available
 - Technology explorer (runs php in browser)
 - WMD Workload Multi-User Driver (Java based)
 - DB2 data base engine
- Runs stable able to exercise without any issues

Hadoop install on P5020

- Simple install (version 1.0.3 for ppc64)
- Minor configuration effort required
- Works for single node and pseudo-distributed mode
- No compilation necessary
- Demo available

Hadoop job_201301191617_0001 on localhost

User: root

Job Name: grep-search

Job File: hdfs://localhost:9000/hadoop-1.0.3/tmp/hadoop-root/mapred/staging/root/.staging/job 201301191617 0001/job.xml

Submit Host: P5020DS-64b_FC17 Submit Host Address: 127.0.0.1 Job-ACLs: All users are allowed

Job Setup: Successful

Status: Running

Started at: Sat Jan 19 16:17:55 CET 2013

Running for: 1mins, 36sec **Job Cleanup**: Pending

Kind	% Complete	Num Tasks	Pending	Running	Complete	Killed	<u>Failed/Killed</u> <u>Task Attempts</u>
map	70.00%	20	4	2	<u>14</u>	0	0/0
reduce	5.00%	8	<u>6</u>	2	0	0	0/0

	Counter	Мар	Reduce	Total
File Input Format Counters	Bytes Read	98,772	0	98,772
	SLOTS_MILLIS_MAPS	0	0	138,791
Job Counters	Launched reduce tasks	0	0	2
Job Counters	Launched map tasks	0	0	16
	Data-local map tasks	0	0	16

HPC CPMD application port

HPC Carr-Parinello Molecular Dynamics package For Ab Initio simulations - a key HPC application

- LAPACK install: compile required 10 min job
 - Using Gfortran and GCC no errors
- CPMD code base configured for PPC64, 2 cores
 - Natively compiled in 15 mins
 - − ~100k lines of Fortran

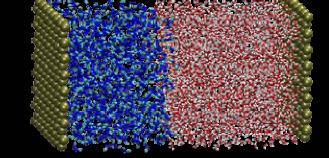


Image Courtesy Jülich Forschungszentrun

• Demo available

*****	****	****	*****		
*****	*****	*****	*****		
***	** ***	** **** **	** ***		
**	** ***	** ** **	** **		
**	*****	** **	** **		
***	****	** **	** ***		
*****	**	** **	*****		
*****	**	** **	*****		

VERSION 3.15.1

TIME FOR WAVEFUNCTION INITIALIZATION:							31.	52 SECC	ONDS
***	RWFOPT	SIZE OF	THE	PROGRAM	IS	544604/	855972	kBYTES	***

TOTAL INTEGRATED ELECTRONIC DENSITY

IN G-SPACE =	256.	0000000000
IN R-SPACE =	256.	0000000000

(K+E1+L+N+X)	TOTAL	ENERGY	=	1758.	54044107	A. U.
(K)	KINETIC	ENERGY	=	2153.	49081626	A. U.
(E1=A-S+R)	ELECTROSTATIC	ENERGY	=	-240.	54895882	A. U.
(S)		ESELF	=	404.	26151081	A. U.
(R)		ESR	=	23.	02270944	A. U.
(L) LOCAL	PSEUDOPOTENTIAL	ENERGY	=	-86.	88913202	A. U.
(N) N-L	PSEUDOPOTENTIAL	ENERGY	=	10.	05501002	A. U.
(X) EXCH	ANGE-CORRELATION	ENERGY	=	-77.	56729436	A. U.
GRA	DIENT CORRECTION	ENERGY	=	-0.	24021788	A. U.

Conclusion

- Server Class 64 bit OS on PowerPC commodity SOC has arrived
- IBM and Freescale demonstrated on PPC64 Book-E:
 - 64 bit Fedora 17
 - IBM DB2 no compilation necessary to run
 - Hadoop no compilation necessary to run
 - HPC CPMD application straightforward port in a few hours

Hot Water Cooling

Most Energy Efficient solution:

- Low PUE possible (<=1.1) Green IT
- 40% less energy consumption compared to air-cooled systems
- 90% of waste heat can be reused (CO₂ neutral according Kyoto protocol)
- Allows very high density
- Less thermal cycling improved reliability
- Lower T_i reduces leakage current further saving energy

SuperMUC HPC machine at LRZ in Germany demonstrates ZRL hot water cooling

No 4 on June 2012 TOP500 HPC list

19" 2U Chassis with Combined Cooling and Power Node board 26 port 10GE SAMTEC SEARAY 500pin switch board ~100 node boards hundreds of cores ~2 TB DRAM "commodity based blue gene Q"

Status of 1 May 2013

Project start: Feb 2012 (DOME contract signed w/ Dutch government)

Freescale P5040 SoC selected

Freescale relationship established

64 bit, Fedora 17 based Stack running on FSL, Embedded PPC64, BookE – P5020DS

IBM DB2, Hadoop, CPMD

Same SW stack demonstrated at Austin FSL lab on T4240 SoC

First P5020 DOME node board received Feb 2013 – currently in bringup

First 8 way cluster, validating cooling concept, planned 2Q 2013

T4240 node board feasibility completed

T4240 node board planned 4Q2013

19" drawer planned 1Q14

PS. P5020 micro-web-server can be viewed here: http://www.swissdutch.ch:6999/

Performance comparison

×	Processor	Compiler	Operating Speed in Mhz	CoreMark /MHz	CoreMark △	CoreMark /Core	EM' BC CERTIFIED	Parallel Execution	Comments	Date Submitted
	IBM POWER7 3550	GCC4.6.1 20111003 (Red Hat 4.6.1-10)	3550	94.70	336196.25			64:PThreads	comment	11/07/11
	Intel Xeon E5-2650 2000	GCC 4.4.6	2000	145.98	291957.48			32:PThreads	comment (1)	08/09/12
	Freescale T4240 1800	GCC 4.7.1	1800	99.87	179763.04	14980.25		24:PThreads	comment	10/15/12
	Tilera TILE-Gx36 1400	gcc 4.4.6	1400	118.05	165276.25	2582.44		35:PThreads	comment	01/24/12
	CAVIUM OCTEON II CN6880 1500	GCC 4.6.1	1500	102.32	153477.22			32:Fork	comment	11/28/11
	Intel Core i7-3930K CPU 3200	GCC4.4.6 20110731 (Red Hat 4.4.6-3)	3200	47.17	150962.39			12:PThreads	comment	05/18/12
	Tilera TILEPro64 (TLR36480BG-9C) 866	gcc 4.4.3	866	167.60	145153.74	2268.03		62: PThreads	comment	12/16/10
	Tilera TILEPro64 (TLR36480BG-9C) 866	GCCEDG gcc 3.2 mode (tile-cc 2.1)	866	140.06	121291.16	1895.17		62: PThreads / core affinitized	comment	11/20/09
	Intel Xeon L5640 ES (2) (Fujitsu RX300 S6) 2266	GCC4.1.2 20080704 (Red Hat 4.1.2-46)	2266	52.33	118571.75			24:PThreads	comment	08/05/10
	Intel(R) Core i7-3930K CPU 3200	GCC4.4.6 20110731 (Red Hat 4.4.6-3)	3200	36.35	116324.16			12:PThreads	comment	05/18/12
	Intel Core i7 2600 3392.236	GCC 4.4.5	3392.236	29.35	99562.34			16:PThreads	comment	03/12/11

Acknowledgements

This work is the results of many people

- Peter v. Ackeren, FSL
- Yvonne Chan, IBM Toronto
- Andreas Doering, IBM ZRL
- Tom Wilson, IBM Armonk
- Alessandro Curioni, IBM ZRL
- Stephan Paredes, IBM ZRL
- James Nigel, FSL
- Gary Streber, FSL
- Patricia Sagmeister, IBM ZRL
- Boris Bialek, IBM Toronto
- Marco de Vos, Astron NL
- Hillery Hunter, IBM WRL
- Vipin Patel, IBM Fishkill
- And many more remain unnamed....

Companies: FSL Austin, Belgium & China; IBM worldwide; Dsgnworx - NL