Recent Advances in Overcoming the Red Shift for CFD Simulation Analytics

49th HPC User Forum, Tucson AZ

Scott T. Imlay Chief Technology Officer, Tecplot Inc.

Outline

- Hardware Trends
- CFD Usage Trends
- Analysis affect of trends on visualization & analysis pipeline
- Proposed solutions
- Results

Tecplot

- Founded in 1981 by two former Boeing employees (Mike Peery & Don Roberts)
- First 15 we developed CFD codes
- Now focus on post-processing analysis and visualization
- 40,000 users world wide (60% domestic)
- On-going performance initiative

Red Shift

- Difference in performance improvement between CPU cores and the components feeding them data
 - Primarily interested in Disk I/O

Driving Force is Moore's Law

Supercomputer performance is tracking with Moore's Law

Hard-drive Load Times Dominate

- Disk Capacity is doubling ever 12 months
- Disk read data transfer rate doubling ever 36 months

CFD Dataset Size Growing with Moore's Law

- Wide range in length scales
- Resolution of grid (# of grid points) constrained by computer performance

Parametric CFD Analysis

Highly-Dimensional Collection of Data:

- Aero Database Development
 - Determine aerodynamic characteristics over subset of flight envelope
 - Mission space: Speeds and angles of flight
 - <u>Configuration space</u>: Control positions, etc.
 - CFD data space: x, y, z, perhaps time
- Optimization or Robust Engineering
 - Additional parameters for geometry
- Verification & Validation
 - Evaluate codes, code parameters, subscale models, etc.

Impact:

tecp

- Multiple CFD runs in each dimension
- 100s or 1000s of CFD datasets generated over months or years – many TeraBytes of data
- Simulation Analytics is the simultaneous analysis and visualization of all these simulation runs
 - Design space (highly dimensional
 - Physical space

From AIAA 2004-5076

Tecplot Chorus For Simulation Analytics

Evaluating overall system performance and allowing engineers to compare results quickly

Master the View

Ramification of Simulation Analytics

- Operations of enormous amounts of data
 - Example: Aero database development
 - Thousands of 100M cell CFD solutions
 - Some operations require data from all sources to be analyzed simultaneously
 - If no clever, must work through equivalent of 100B cells
- Large data performance issues become dramatically worse

Data Processing Pipeline

Data IO is the current rate determining step in the visualization pipeline.

Consequence of Red Shift

Current

 visualization
 architectures
 will perform
 worse as time
 goes on!

Overcoming Data Transfer Bottleneck Popular Approaches in Industry

- Hardware/System Improvements
 - Parallel file systems (delays problem, but can't outgrow Moore's law by adding spindles)
 - New types of memory
 - SSD (probably expensive for many of our customers)
 - Holographic memory, etc. (not soon)
- In Situ visualization
 - Link libraries into CFD code to extract desired data or images (Don't save volume data)
 - Circumvents the disk transfer rate bottleneck
 - What about aggregations and data mining?
- Parallel visualization
 - Doesn't entirely solve disk transfer rate problem
 - May help some if it uses efficient parallel data reads
 - Red Shift doesn't need more compute power!

Master the View

Overcoming Data Transfer Bottleneck Our Solution

- Reduce the amount of data you read!
 Must scale sub-linearly with the size of the grid
- Subzone Load-on-Demand (SZLoD)
 - Save indexed volume data file
 - Load only the data you need (Lazy Loading)
 - Related work
 - Out-of-Core algorithms of the 1990's
 - Field Encapsulation library of Patrick Moran at NASA Ames
 - Patrick Moran, et. al. "Field Encapsulation Library: The FEL 2.2 User Guide", NAS Technical Report NAS-00-002. NASA Ames Research Center, January, 2000

How Does SZLoD Work?

Example 2D Contour Line

- Current Methodologies require loading data for zone
- For Large data loading can be time intensive

tecplo

Domain can be indexed

- Decomposition of domain into smaller subdomains
- These subdomains can be indexed

Data Required for Line 5/16 of total data

- Loading time reduced
- Memory requirements reduced

laster the View

SZLoD Similar in 3D

• The indexed decomposition can be extended to 3D for iso-surfaces, slices and streamtraces

SZLoD Extended to Unstructured Data

Indexing for Subzone Selection -Interval Tree

Binary tree of intervals (value ranges)

- Return all intervals that contain a specified value of the variable
- 255 cells per subzone
- Query is O(log(N))

Grid Size (Cells)	Size (subzones)	Query (no tree)	Query (tree)	Tree file size
1B	4M	17ms	0.12ms	62.8MB
10B	40M	160ms	1.4ms	620MB

Test Cases

tecpl

- Synthetic test dataset
 Scaling up to a billion cells
- Transport aircraft
 - 187 Million cell finite-element grid
- Unsteady wind-turbine analysis

 Overflow results
- NASA Trapezoidal Wing (High Lift Prediction Workshop)
 - 204 Million cell finite-element grid

Scaling of Subzone LOD with Dataset Size

- Overcoming Red Shift
 - Need sub-linear
 scaling with number
 of cells
 - SZLoD scales
 O(N^2/3)

FE Transport Aircraft - Slice

FE Transport Aircraft - Streamtrace

- Tecplot
 - 170 sec
 - **—** 16 GB
- SZLOD
 - 2.2 sec
 - 1.3GB max
 - 0.7GB resting

Animation of Wind Turbine Vorticity Magnitude

SZLoD Performance for Overset Grid

Full Trap Wing Results - Isosurface

- Generate Isosurface, Cp=-2
 - 408M FEBrick cells in volume
 - 4.7M triangles in isosurface
 - 16x faster than standard
 Tecplot

Algorithm Used	Time (sec)	Peak Mem (GB)
Standard Tecplot	700	49
Subzone Load- on-Demand	43	2.4

Half Trap Wing Results - Slice

- Generate Slice at y=100
 - 94x faster than standard Tecplot
 - 540x faster than single-threaded Tecplot
 - 55x less memory

Algorithm Used	Time (sec)	Peak Mem (GB)
Standard Tecplot	222	20.5
Single-Threaded Tecplot	1279	20.4
Subzone Load- on-Demand	2.36	0.366

Conclusions

- Dramatic reduction in memory requirements
 - Factor of 4 to 50 less memory used
 - Scaling for isosurface and slices is $O(N^{2/3})$ critical for maintaining performance into the future
 - Scaling for a streamtrace is $O(N^{1/3})$
- Significant improvements in speed for most cases
 - 15 to 120 times faster for synthetic data and transport aircraft
 - 3 times faster for overset data with large number of zones
- Similar benefits when network bandwidth is bottleneck
- Downside
 - Speedups depend on using new file format (but you can still get memory reductions with native files)

Questions?

If you are interested in testing this technology, please talk with Scott (<u>s.imlay@tecplot.com</u>)

