The Big Data Paradigm Shift
Insight Through Automation
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The Problem

 Emcien’s Solution:
— Algorithms solve data related business problems
How Does the Technology Work?

e« Case Studies
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The Problem

Data is growing at an unprecedented rate
Less than 1% of data is analyzed
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Old Paradigm: Manually Intensive Analysis
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New Paradigm: Automation of Analysis

PREDICTABLE

FAST

ECONOMICAL

a2 *

Collect > > Review & Act
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Emcien’s Unique Value Proposition

Emcien’s automatic pattern-detection platform
delivers timely mission critical insights from data

= Automated analysis for fast, predictable, accurate insight

= Applicable across all data types:

Structured & Unstructured data, Text or Numeric

= Algorithms designed to solve business problems
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Types of Data: Structured, Unstructured,

Static, Streaming...
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Limitations of Current Solutions

Manually Intensive
= Very slow and unreliable
= Search or query based
= Visualization as a means for discovery - High error

Only certain data types
= Numerical analysis only
= Text only, NLP methods, very high set up cost

Data staging
» Streaming data and recent analysis
» At-rest data and historic analysis

Lack of Scalability
Current approaches focus too much on storage methods
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Another View of the Big Data Stack

Our Focus

Value Layer

Sectors

Analysis Layer

Infrastructure
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Structured

How Does Our Solution Work?

Big Data problems need graph analysis
Framework for analyzing relationships

Highly scalable representation

Data values = Tokens = Graph
Tokens are linked if they occur together
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Algorithms Solve to Extract Patterns

« Algorithms surface the highly relevant dependencies
— Defocus the redundant/noise to surface the signal
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Data Patterns That Reveal "The Insight”

Algorithms designed to reveal graph constructs that solve a business problem

Solving a Graph Problem Results in Solving a Business Problem

Loosely Federated - Reveals groups that behave similarly
Communities - Reveals dimensions that bind the group
- Impossible to detect in a typical querying
system
Cliques - Highly correlated elements

- Optimal query that would lead to insight

People Network - Reveals influence network of individual
- Highly predictive for adoption behaviors

Substitute Nodes - Nodes that behave very similarly
- ID theft or product substitutes

& emcien
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Algorithms Are Highly Scalable For Big Data

Traditional Data Storage:

 Linear growth with transactions
» Very large storage requirements are
 Increases response time
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Graph Data Storage:

Size of total number of entities
E.g. Store has 500,000 items -
graph has 500,000 nodes
Weights updated with transactions
Delivers a global view of the data
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Speed of Data = Answers
Access Time vs. Processing Speed .

Traditional Data Storage: Graph Data Storage:

Limit is query speed  All results are Pre-computed

In-memory, hadoop cluster approaches (like Google)

Highly dimensional data is a problem * Pre-computing speed: 50K trans/sec

Unstructured content is a problem compute on 1-core 8GB RAM
system

» Speed of response is “access time”

& emcien
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The Business Problems We Solve
Across Different Types of Data

Automatically Extract Dependencies

Web click-stream - Reveal click
patterns & market segments

Sales data - Reveal consumption

Surprising Streaming Content

Machine Network traffic — Reveal
network intrusion

Sales transactions — Reveal fraud
based on unusual patterns

Social Patterns & People Network

Marketing - Reveal conversation
patterns, people communities

For Intel - Reveal bad actors based
on conversation patterns

Entity Resolution / Cleansing

Patterns automatically clusters
similar entities.




Intel Case Study (1/4)
Cyber Threat Monitoring with Open Source Data

Customer Overview And Current Situation
* Federal agency is failing to keep up with the activity and data in open source
* Open Source (social, IRC, blogs, etc.) are a key source of communication for

underworld
* Link analysis leads to people of interest network — which is key for intelligence

Customer Objective
* Federal agency requires fast methods to process high volume open source data

* Need automated methods to highlight conversations of interest
* Need automated link analysis to focus on people of interest
* Fast and continuous data processing to keep up with the speed of crime
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Intel Case Study (2/4)
Layers of Analysis for Cyber Threat Monitoring

People Graph:
Seeds to Reveal network
of People of Interest

Influential people
are ranked based
on conversation
relevance

Pattern Detection to
Isolate Conversations
Helicopter of Interest

ready for

Bomb
attack next Tanks turn on
crowd

® ‘@ .
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Intel Case Study (3/4)
Cyber Threat Monitoring with Open Source Data

Influential people ranked based on conversations

Possible Extremist

e =

b = Overview
—r - o e i 3 2 250,000 Accounts
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Highly relevant” People of Interest” network
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Intel Case Study (4/4)
Cyber Threat Monitoring with Open Source Data

The silent signal — Automatically detecting a sleeper cell
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Network Traffic Log Files (1/6)
Revealing Patterns In Machine-to-Machine Data

Customer Overview
* Research Institute has thousands of users on their network
* Must provide controlled safe access for the internal working labs and the outside
network
e Controlillegal intrusions, malicious malware and illegal data transmissions

Customer Objective — Automate Process of Intrusion Detection
e Scan streaming machine-to-machine log file output
* Detect surprising/interesting anomalies/beacons
e Automatically send short list of top ranked “questions” to ask of the data into existing
tools (such as CA, Sumologic, Splunk, etc.)
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Network Traffic Log Files (2/6)
Example Use Cases

Example Use Cases
1. Summarize and Rank Log File data based on “Surprising flow
patterns”

2. Determine Machine network based on flow patterns.
 Rank Machines based on their “influence” in the network

3. Detect “communities of machines” based on how they “talk to each
other”

& emcien
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Network Traffic Log Files (3/6)
Reveal Surprising Patterns In Network flow Data
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Network Traffic Log Files (4/6)
Ranked Summary of “Surprising” Events
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Network Traffic Log Files (5/6)
Most “Influential” Nodes on network

Network Traffic
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Network Traffic Log Files (6/6)
Machine Communities based on “how they talk”

Lab A Lab B
Physical
Connections W‘ w IH
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011 _ 101¢ ,
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Intel Case Study (1/6)

Reveal Conversation Patterns & Network of Actors in Email Data

Customer Overview And Current Situation
* Federal agency is failing to keep up with the activity and data in email

* Too much data and current tools are manually intensive

Customer Objective
* Federal agency requires fast methods to process high volume of email data

* Need automated methods to highlight conversations of interest
* Need automated link analysis to focus on people of interest based on emails
* Fast and continuous data processing to keep up with the speed of crime

& emcien
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Intel Case Study (2/6)

Automatic Data Collectors

 Content extracted from emails
 Addresses extracted and linked

Text Summary

o e et

Extraction
Program

Email Addresses
And Phone nums

emcdien
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Intel Case Study (3/6)

Automatic Email Extraction

Extracts all Addresses in Header AND Body

From: daniel.brown@enron.com

From:  daniel brown@enroncom
danjefi@enroncom, daviddelaney &Eenroncom . s
10 To: danleff@enron.com,david.delaney @enron.com
Subject: FW: EES Employee lssues
Ce: kalenicper@enron com, judy gmy @cnron com Subject: FW: EES Employee Issues
Bee:  kalenpieper@enroncom. judy gry @enmacom ] )
Date:  Wed, 12 Dec 2001 09:28:51 B0O (PST) Cc: kalen .pieper@enron.com, judy.gray @enron.com
Dasiare: Bcec: kalen .pieper@enron.com, judy.gray @enron.com

We are working to gather as much information as possible on our exposure to relocated former and current domestic and
mternational employees impacted by Enron's bankruptey filing. Lloyd has outlined our position on the urgent issues below.
Please keep in mind that regardless of our obligation, the courts have only approved S15K per employee for all expenses less
the $4300 payment if applicable,

We will continue to work on getting a comprehensive listing over the next couple of days.

Daniel [

Messages extracted, each
word tokenized and connected

into graph.
We are workin\gi gather\
it@ éﬁ working
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Intel Case Study (4/6)
Automatic Email Summarization

Summarize content from emails to better
understand group conversations

Wikileaks Roalime m\/wew

" W 1,496 Messages

Search Assis For: 334 conversations
Jun 13, 9:33 AM - Sep 9, 3:23 AM 2008

To view other search results, drag the timslina
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Gov Sy Subject 54 Transass
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Jun 13, 9:33 AM - Sap 0, 323 AM 2008

Mrs Find Attached ¢
Topic: Mrs Asma Assad (. AR DN DO B
Mrs First Lady 21
6 Dear all I was contacted recently by the office of Mrs, Asma Assad, the First Lady of Syria, Know Mrs Like 19
es who was intcrcsto.d in visiting Ashoka Fellows in her upeoming trip to India. | want to & 14 i 1
extend my most sincere thanks to the entire Ashoka India team -
B Yoors Ago {Jun 14, 2008 837 PM) | Author! ibbors@ashokaorg | Traewolate me M.M 14
Looking Forward Soon 13
6 especially Sohini, Shivangini, and Lily - for acting so effectively and on such short notice 12 0 Aigaay sidh
Messages, 'O Prepurce nriching site visits for Mrs. Assad's advance team. They really went out of &
their way to help and 1 couldn't be more appreciative, The team A X
6 Yoars Ago Lun 14, 2008 837 PM) | Author ipbhas@ashosaorg | Trenalate Locatlon OVBFVIBW .
ASIA
1 Dear all I was contacted recently by the office of Mrs. Asma Assad, the First Lady of Syria, \ PR,
" who was interested in visiting Ashoka Fellows in her upcoming trip to India, I want to & .Mm(A

extend my most sincere thanks to the entire Ashoka India team -
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Intel Case Study (5/6)

People Graph (1/2)

Program extracts
To/From email addresses
and phone numbers
from suspects email
account

Newly created contacts
file is loaded into Scout
People Graph
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Intel Case Study (6/6)
Algorithm Computes People Graph (2/2)

Initial “bad actor” seed accounts (emails
addresses or phone numbers) are
selected or entered

Overview
15,973 Accounts Analyzed
42,337 Connections Detected

Demo
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oo orm. Xin
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How Emcien Fits Into Your Ecosystem

Feed downstream ..
systems with data
output |

Ul for Analyst who
wants to review

_ results
Production

Servers

&> emcelen’

Pattern Detection Platform

SEICERICHS « Social Media « Server Logs
Bank Trans « News / Blogs  Web logs

Insurance e« Emails/ Chat « Security Logs
Claims

Unstructured
(Machine Pata)
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Questions?
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Types of Data

« Many types of Data
— Structured, Unstructured
— Text, Numeric, Machine

* In many states
— Static (slow batch)
— Streaming or fast batch

You ?
Social, Blogs, E‘m%a ?ta

Newsfeeds

{ ine Data
N rk log files
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Limitations of Current Solutions

Manually Intensive: Very slow and unreliable
— Search or query based
— Visualization as a means for discovery - High error

Limitation based on data types
— Numerical analysis only
— Text only, NLP methods, very high set up cost

Limitation based on data staging
— Streaming data and recent analysis
— At-rest data and Historic analysis

Scalability
— Current approaches focus too much on storage methods
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