
© 2014 IBM Corporation
HPC User Forum September 2014

Memory-Driven Near-Data
Acceleration

and its application to DOME/SKA

Jan van Lunteren
Heiner Giefers
Christoph Hagleitner
Rik Jongerius

IBM Research

© 2014 IBM Corporation HPC User Forum September 2014

Square Kilometer Array (SKA)

 The world’s largest and most sensitive radio telescope

 Co-located in South Africa and Australia

– deployment SKA-1: 2020

– deployment SKA-2: 2022+

DOME

 Dutch-government-sponsored SKA-focused

research project between IBM and the

Netherlands Institute for Radio Astronomy

(ASTRON)

2

DOME / SKA Radio Telescope

Source: T. Engbersen et al., “SKA – A Bridge too far, or not?,” Exascale Radio Astronomy, 2014

Image credit: SKA Organisation

~3000 Dishes 3-10GHz ~0.25M Antennae 0.5-1.7GHz ~0.25M Antennae 0.07-0.45GHz

© 2014 IBM Corporation HPC User Forum September 2014

Big Data (~Exabytes/day) and Exascale Computing Problem

 Example: SKA1-Mid band 1 SDP (incl. 2D FFTs, gridding, calibration, imaging)

– meeting the design specs requires ~550 PFLOPs

– extrapolating HPC trends: 37GFLOPs/W in 2022 (20% efficiency)

• results in 15MW power consumption – power budget is only 2MW

• peak performance ~2.75 EFLOPs (at 20% efficiency)

 Innovations needed to realize SKA

3

DOME / SKA Radio Telescope

Sources: R. Jongerius, “SKA Phase 1 Compute and Power Analysis,” CALIM 2014

 Prelim. Spec. SKA, R.T. Schilizzi et al. 2007 / Chr. Broekema

Image credit: SKA Organisation

© 2014 IBM Corporation HPC User Forum September 2014 4

DOME / SKA Radio Telescope

Programmable general-purpose

off-the-shelf technology

 CPU, GPU, FPGA, DSP

+ ride technology wave

- do not meet performance and

power efficiency targets

Fixed-function application-

specific custom accelerators

 ASIC

+ meet performance and power

efficiency targets

- do not provide required flexibility

- high development cost

Example Energy Estimates (45nm)

 70pJ for instruction (I-cache and register file access, control)

 3.7pJ for 32b floating-point multiply operation

 10-100pJ for cache access

 1-2nJ for DRAM access

Source: M. Horowitz, “Computing’s Energy Problem (and what can we do about it),” ISSCC 2014.

high energy cost of programmability

large impact of memory on energy consumption

© 2014 IBM Corporation HPC User Forum September 2014 5

DOME / SKA Radio Telescope

Research Focus

 Can we design a programmable custom accelerator that outperforms off-the-shelf

technology for a sufficiently large number of applications to justify the costs?

 Focus on critical applications that involve regular processing steps and for which

the key challenges relate to storage of and access to the data structure:

 “how to bring the right operand values efficiently to the execution pipelines”

– examples: 1D/2D FFTs, gridding, linear algebra workloads, sparse, stencils

Programmable general-purpose

off-the-shelf technology

 CPU, GPU, FPGA, DSP

+ ride technology wave

- do not meet performance and

power efficiency targets

Fixed-function application-

specific custom accelerators

 ASIC

+ meet performance and power

efficiency targets

- do not provide required flexibility

- high development cost

© 2014 IBM Corporation HPC User Forum September 2014 6

Memory System

Observations (“common knowledge”)

 Access bandwidth/latency/power depend on complex
interaction between access characteristics and
memory system operation

– access patterns/strides, locality of reference, etc.

– cache size, associativity, replacement policy, etc.

– bank interleaving, row buffer hits, refresh, etc.

 Memory system operation is typically fixed and
cannot be adapted to the workload characteristics

– extremely challenging to make it programmable
due to performance constraints (in “critical path”)

 opposite happens: “bare metal” programming to
 adapt workload to memory operation to achieve
 substantial performance gains

 Data organization often has to be changed between
consecutive processing steps

Main Memory

Core

Core

Core

memory
controller(s)

shared L3 cache

L1/L2
cache

L1/L2
cache

L1/L2
cache

…

…

reg.file reg.file reg.file

DRAM
bank

row buf

DRAM
bank

row buf

DRAM
bank

row buf

…

© 2014 IBM Corporation HPC User Forum September 2014 7

Memory System

Programmable Near-Memory Processing

 Offload performance-critical applications/functions to
programmable accelerators closely integrated into the
memory system

1) Exploit benefits of near-memory processing (“closer
to the sense amplifiers” / reduce data movement)

2) Make memory system operation programmable such
that it can be adapted to workload characteristics

3) Apply an architecture/programming model that
enables a more tightly coupled scheduling of
accesses and data operations to match access
bandwidth with processing rate to reduce overhead
(including instruction fetch and decode)

 Integration examples

– on die with eDRAM technology

– 2.5D / 3D stacked architectures

– memory module

Main Memory

Near-Memory Accelerator
(memory controller)

…
DRAM

bank

row buf

DRAM

bank

row buf

DRAM

bank

row buf

Core

Core

Core

shared L3 cache

L1/L2
cache

L1/L2
cache

L1/L2
cache

…

reg.file reg.file reg.file

…

© 2014 IBM Corporation HPC User Forum September 2014

Decoupled Access/Execute Architecture

 Access processor (AP) handles all memory access

related functions

– basic operations are programmable (address

generation, address mapping, access scheduling)

– memory details (cycle times, bank organization,

retention times, etc.) are exposed to AP

– AP is the “master”

 Execution pipelines (EPs) are configured by AP

– no need for instruction fetch/decoding

 Tag-based data transfer

– tags identify configuration data, operand data

– enables out-of-order access and processing

– used as rate-control mechanism to prevent

the AP from overrunning the EPs

 Availability of all operand values in the EP input

buffer/register triggers execution of the operation

cache hierarchy

Core Core Core

8

Near-Data Acceleration

…

Access Processor

Execution Pipeline(s)

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

data
+

tags

data
+

tags

addresses
+ data

© 2014 IBM Corporation HPC User Forum September 2014 9

Near-Data Acceleration

Example: FFT

(sample data in eDRAM)

cache hierarchy

Core Core Core …

Access Processor

Execution Pipeline(s)

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

data
+

tags

data
+

tags

addresses
+ data

© 2014 IBM Corporation HPC User Forum September 2014 10

Near-Data Acceleration

cache hierarchy

Core Core Core …

 Access Processor

Execution Pipeline(s)

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

data
+

tags

data
+

tags

addresses
+ data

Example: FFT

1) Application selects function and initializes

near-memory accelerator

instr.
mem

© 2014 IBM Corporation HPC User Forum September 2014

cache hierarchy

Core Core Core

11

Near-Data Acceleration

…

Access Processor

Execution Pipeline(s)

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

configuration
data

addresses
+ data

Example: FFT

1) Application selects function and initializes

near-memory accelerator

2) Access Processor configures Execution

pipeline

© 2014 IBM Corporation HPC User Forum September 2014

cache hierarchy

Core Core Core

12

Near-Data Acceleration

…

Access Processor

Butterfly Unit

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

addresses
+ data

Example: FFT

1) Application selects function and initializes

near-memory accelerator

2) Access Processor configures Execution

pipeline

© 2014 IBM Corporation HPC User Forum September 2014 13

Near-Data Acceleration

Example: FFT

1) Application selects function and initializes

near-memory accelerator

2) Access Processor configures Execution

pipeline

3a) Access Processor generates addresses,

schedules accesses and assigns tags

‒ read operand data for butterflies

‒ write butterfly results

(pre-calculate addresses)

3b) Execution pipeline performs butterfly

 calculation each time a complete set of

 operands is available

cache hierarchy

Core Core Core …

Access Processor

Butterfly Unit

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

addresses
+ data

operand 1
tag 0

© 2014 IBM Corporation HPC User Forum September 2014 14

Near-Data Acceleration

cache hierarchy

Core Core Core …

Access Processor

Butterfly Unit

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

addresses
+ data

operand 2
tag 1

Example: FFT

1) Application selects function and initializes

near-memory accelerator

2) Access Processor configures Execution

pipeline

3a) Access Processor generates addresses,

schedules accesses and assigns tags

‒ read operand data for butterflies

‒ write butterfly results

(pre-calculate addresses)

3b) Execution pipeline performs butterfly

 calculation each time a complete set of

 operands is available

© 2014 IBM Corporation HPC User Forum September 2014 15

Near-Data Acceleration

cache hierarchy

Core Core Core …

Access Processor

Butterfly Unit

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

addresses
+ data

twiddle factor
tag 2

Example: FFT

1) Application selects function and initializes

near-memory accelerator

2) Access Processor configures Execution

pipeline

3a) Access Processor generates addresses,

schedules accesses and assigns tags

‒ read operand data for butterflies

‒ write butterfly results

(pre-calculate addresses)

3b) Execution pipeline performs butterfly

 calculation each time a complete set of

 operands is available

© 2014 IBM Corporation HPC User Forum September 2014 16

Near-Data Acceleration

cache hierarchy

Core Core Core …

Access Processor

Butterfly Unit

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

addresses
+ data

all operands available
 processing starts

Example: FFT

1) Application selects function and initializes

near-memory accelerator

2) Access Processor configures Execution

pipeline

3a) Access Processor generates addresses,

schedules accesses and assigns tags

‒ read operand data for butterflies

‒ write butterfly results

(pre-calculate addresses)

3b) Execution pipeline performs butterfly

 calculation each time a complete set of

 operands is available

© 2014 IBM Corporation HPC User Forum September 2014 17

Near-Data Acceleration

cache hierarchy

Core Core Core …

Access Processor

Butterfly Unit

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

addresses
+ data

result 1
tag 4

Example: FFT

1) Application selects function and initializes

near-memory accelerator

2) Access Processor configures Execution

pipeline

3a) Access Processor generates addresses,

schedules accesses and assigns tags

‒ read operand data for butterflies

‒ write butterfly results

(pre-calculate addresses)

3b) Execution pipeline performs butterfly

 calculation each time a complete set of

 operands is available

© 2014 IBM Corporation HPC User Forum September 2014 18

Near-Data Acceleration

cache hierarchy

Core Core Core …

Access Processor

Butterfly Unit

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

addresses
+ data

result 2
tag 5

Example: FFT

1) Application selects function and initializes

near-memory accelerator

2) Access Processor configures Execution

pipeline

3a) Access Processor generates addresses,

schedules accesses and assigns tags

‒ read operand data for butterflies

‒ write butterfly results

(pre-calculate addresses)

3b) Execution pipeline performs butterfly

 calculation each time a complete set of

 operands is available

© 2014 IBM Corporation HPC User Forum September 2014 19

Near-Data Acceleration

cache hierarchy

Core Core Core …

Access Processor

Butterfly Unit

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

addresses
+ data

stage
configuration

Example: FFT

1) Application selects function and initializes

near-memory accelerator

2) Access Processor configures Execution

pipeline

3a) Access Processor generates addresses,

schedules accesses and assigns tags

‒ read operand data for butterflies

‒ write butterfly results

(pre-calculate addresses)

3b) Execution pipeline performs butterfly

 calculation each time a complete set of

 operands is available butterfly
calculations

© 2014 IBM Corporation HPC User Forum September 2014 20

Near-Data Acceleration

cache hierarchy

Core Core Core …

Access Processor

Butterfly Unit

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

addresses
+ data

twiddle factor
tag 2 - reuse flag

Example: FFT

1) Application selects function and initializes

near-memory accelerator

2) Access Processor configures Execution

pipeline

3a) Access Processor generates addresses,

schedules accesses and assigns tags

‒ read operand data for butterflies

‒ write butterfly results

(pre-calculate addresses)

3b) Execution pipeline performs butterfly

 calculation each time a complete set of

 operands is available

© 2014 IBM Corporation HPC User Forum September 2014 21

Near-Data Acceleration

Example: FFT

1) Application selects function and initializes

near-memory accelerator

2) Access Processor configures Execution

pipeline

3a) Access Processor generates addresses,

schedules accesses and assigns tags

‒ read operand data for butterflies

‒ write butterfly results

(pre-calculate addresses)

3b) Execution pipeline performs butterfly

 calculation each time a complete set of

 operands is available

cache hierarchy

Core Core Core …

Access Processor

Butterfly Unit

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

addresses
+ data

operand 4
tag 0

result 1
tag 4

direct forwarding

© 2014 IBM Corporation HPC User Forum September 2014

cache hierarchy

Core Core
Execution Pipeline Hierarchy

 Different levels of coupling between access/data
transfer scheduling and operation execution

 L2 - loosely coupled

– timing of transfers, execution and write
accesses (execution results) not exactly
known in advance to AP

– requires write buffer

– rate control based on #tags being “in flight”

 L1 – tightly coupled

– AP “knows” execution pipeline length

– reserves slots for write execution results

– minimizes buffer requirements

– optimized access scheduling
 “just in time” / “just enough”

 For completeness

– L0 – table lookup (pre-calculated results)

– L3 – host CPU or GPU

Core

22

Near-Data Acceleration

…

addresses
+ data

Access Processor

…
eDRAM

bank

eDRAM

bank

eDRAM

bank

data
+

tags

data
+

tags

Execution Pipeline(s) L2

loosely coupled

EP L0

b
u
ff
e
r

Execution Pipeline(s) L1

tightly coupled

L3

© 2014 IBM Corporation HPC User Forum September 2014

Implementation Examples

 On the same die with eDRAM

23

Near-Data Acceleration

eDRAM eDRAM eDRAM

eDRAM eDRAM

eDRAM eDRAM eDRAM

AP

EP

tightly
coupled

loosely
coupled DRAM

DRAM

DRAM

DRAM

Logic (AP/EP)

 3D stack

EP

 FPGA

AP
+

eDRAM

loosely
coupled

FPGA

© 2014 IBM Corporation HPC User Forum September 2014

Programmable state machine B-FSM

 Multiway branch capability supporting the evaluation
of many (combinations of) conditions in parallel

– loop conditions (counters, timers), data arrival, etc.

– hundreds of branches can be evaluated in parallel

 Reacts extremely fast:
dispatch instructions within 2 cycles (@ > 2GHz)

 Multi-threaded operation

 Fast sleep/nap mode

24

Enabling Technologies

condition

vector

address

mapper
ALU register

file

data path

 control
B-FSM engine

instr. mem.

instruction

vector

 bus control
memory control

© 2014 IBM Corporation HPC User Forum September 2014 25

B-FSM - Programmable State Machine Technology

 Novel HW-based programmable state machine

– deterministic rate of 1 transition/cycle @ >2 GHz

– storage grows approx. linear with DFA size

• 1K transitions fit in ~5KB, 1M transitions fit in ~5MB

– supports wide input vectors (8 – 32 bits) and flexible

branch conditions: e.g., exact-, range-, and

ternary-match, negation, case-insensitive

 TCAM emulation

 Successfully applied to a range of accelerators

– regular expression scanners, protocol engines, XML parsers

– processing rates of ~20Gbit/s for single B-FSM in 45nm

– small area cost enables scaling to extremely high aggregate

processing rates

Source: “Designing a programmable wire-speed regular-expression matching accelerator,” IEEE/ACM int. symposium on Microarchitecture (MICRO-45), 2012

© 2014 IBM Corporation HPC User Forum September 2014

Programmable address mapping

 Unique programmable interleaving of multiple

power-of-2 address strides

 Support for non-power-2 number of non-identical

sized banks and/or memory regions

 Based on small lookup table (typ. 4-32 bytes)

26

Enabling Technologies

condition

vector

address

mapper
ALU register

file

data path

 control
B-FSM engine

instr. mem.

instruction

vector

 bus control
memory control

© 2014 IBM Corporation HPC User Forum September 2014 27

Programmable Address Mapping

...

address space

eDRAM

bank

eDRAM

bank
…

eDRAM

bank

bank id.

internal
bank

address

X Y Lookup

table

internal bank address bank id.

address

© 2014 IBM Corporation HPC User Forum September 2014 28

Programmable Address Mapping

 LUT size = 4 bytes

 Simultaneous interleaving of row

and column accesses

 Example: n=256

– two power-of-2 strides: 1 and 256

263

518

773

4

259

514

769

519

774

5

260

515

770

1

256

775

6

261

516

771

2

257

512

7

262

517

772

3

258

513

768

...

...
1024 1280 1536 1792

0

memory banks

7

6

5

4

3

2

1

...

...
256

0

1 2 3 0

a12 a13 … a1n

a21 a22 a23 … a2n

a31 a32 a33 … a3n …

…

…

…

am1 am2 am3 … amn

© 2014 IBM Corporation HPC User Forum September 2014

...
784 16 272 528

...
16

 LUT size = 16 bytes

 Simultaneous interleaving of row,

column, and “vertical layer” accesses

 Example

– three power-of-2 strides: 1, 16 and 256

29

Programmable Address Mapping

773

4

259

514

769

5

260

515

770

1

256

261

516

771

2

257

512

517

772

3

258

513

768

...
271 527 783 15

0

memory banks

5

4

3

2

1

...
15

0

1 2 3 0

...
544 800 32 288

...
32

31 287 543 799 31

...
304 560 816 48

...
48

815 47 303 559 47

...
64 320 576 832

...
64

575 831 63 319 63

...
1024 1280 1536 1792

...
256

© 2014 IBM Corporation HPC User Forum September 2014 30

Power Efficiency

Power

 Access Processor power estimate for 14nm, > 2GHz: 25-30 mW

Amortize Access Processor energy over large amount of data

 Maximize memory bandwidth utilization (basic objective of the accelerator)

– bank interleaving, row buffer locality

 Exploit wide access granularities

– example: 512 bit accesses @ 500 MHz [eDRAM]

– estimated AP energy overhead per accessed bit ≈ 0.1 pJ

 Make sure that all data is effectively used

‒ improved algorithms

‒ data shuffle unit: swap data at various

granularities within one/multiple lines

(configured similar as EP)

© 2014 IBM Corporation HPC User Forum September 2014 31

Conclusion

New Programmable Near-Memory Accelerator

 Made feasible by novel state machine and address mapping technologies

that enable programmable address generation, address mapping, and access

scheduling operations in “real-time”

 Objective is to minimize the (energy) overhead that goes beyond the basic

storage and processing needs (memory and execution units)

 Proof of concept for selected workloads using FPGA prototypes and initial

compiler stacks

 More details to be published soon

