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Square Kilometer Array (SKA)  

 The world’s largest and most sensitive radio telescope 

 Co-located in South Africa and Australia 

– deployment SKA-1: 2020 

– deployment SKA-2: 2022+ 

 

DOME 

 Dutch-government-sponsored SKA-focused 

research project between IBM and the 

Netherlands Institute for Radio Astronomy 

(ASTRON) 
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DOME / SKA Radio Telescope 

Source:  T. Engbersen et al., “SKA – A Bridge too far, or not?,” Exascale Radio Astronomy, 2014 

Image credit: SKA Organisation 

~3000 Dishes 3-10GHz ~0.25M Antennae 0.5-1.7GHz ~0.25M Antennae 0.07-0.45GHz 
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Big Data (~Exabytes/day) and Exascale Computing Problem 

 Example: SKA1-Mid band 1 SDP (incl. 2D FFTs, gridding, calibration, imaging) 

– meeting the design specs requires ~550 PFLOPs 

– extrapolating HPC trends: 37GFLOPs/W in 2022 (20% efficiency) 

• results in 15MW power consumption – power budget is only 2MW  

• peak performance ~2.75 EFLOPs (at 20% efficiency) 
 

 Innovations needed to realize SKA 
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DOME / SKA Radio Telescope 

Sources: R. Jongerius, “SKA Phase 1 Compute and Power Analysis,” CALIM 2014 

  Prelim. Spec. SKA, R.T. Schilizzi et al. 2007 / Chr. Broekema 

Image credit: SKA Organisation 
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DOME / SKA Radio Telescope 

Programmable general-purpose 

off-the-shelf technology 

 CPU, GPU, FPGA, DSP 

+ ride technology wave 

- do not meet performance and 

power efficiency targets 
 

Fixed-function application- 

specific custom accelerators 

 ASIC 

+ meet performance and power 

efficiency targets 

-   do not provide required flexibility 

- high development cost 

Example Energy Estimates (45nm) 

 70pJ for instruction (I-cache and register file access, control) 

 3.7pJ for 32b floating-point multiply operation 

 10-100pJ for cache access 

 1-2nJ for DRAM access 

Source: M. Horowitz, “Computing’s Energy Problem (and what can we do about it),” ISSCC 2014. 

 

high energy cost of programmability 

 
 

large impact of memory on energy consumption 



© 2014 IBM Corporation HPC User Forum September 2014 5 

DOME / SKA Radio Telescope 

Research Focus 

 Can we design a programmable custom accelerator that outperforms off-the-shelf 

technology for a sufficiently large number of applications to justify the costs? 
 

 Focus on critical applications that involve regular processing steps and for which 

the key challenges relate to storage of and access to the data structure: 
 

  “how to bring the right operand values efficiently to the execution pipelines” 
 

– examples: 1D/2D FFTs, gridding, linear algebra workloads, sparse, stencils 
 

 

 

Programmable general-purpose 

off-the-shelf technology 

 CPU, GPU, FPGA, DSP 

+ ride technology wave 

- do not meet performance and 

power efficiency targets 

 
 

Fixed-function application- 

specific custom accelerators 

 ASIC 

+ meet performance and power 

efficiency targets 

-   do not provide required flexibility 

- high development cost 
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Memory System 

Observations (“common knowledge”) 

 Access bandwidth/latency/power depend on complex 
interaction between access characteristics and 
memory system operation  

– access patterns/strides, locality of reference, etc. 

– cache size, associativity, replacement policy, etc. 

– bank interleaving, row buffer hits, refresh, etc. 

 

 Memory system operation is typically fixed and 
cannot be adapted to the workload characteristics 

– extremely challenging to make it programmable 
due to performance constraints (in “critical path”) 
 

 opposite happens: “bare metal” programming to 
  adapt workload to memory operation to achieve 
  substantial performance gains 

 

 Data organization often has to be changed between 
consecutive processing steps 
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Memory System 

Programmable Near-Memory Processing 

 Offload performance-critical applications/functions to 
programmable accelerators closely integrated into the 
memory system 
 

1) Exploit benefits of near-memory processing (“closer 
to the sense amplifiers” / reduce data movement) 
 

2) Make memory system operation programmable such 
that it can be adapted to workload characteristics 
 

3) Apply an architecture/programming model that 
enables a more tightly coupled scheduling of 
accesses and data operations to match access 
bandwidth with processing rate to reduce overhead 
(including instruction fetch and decode) 
 

 Integration examples 

– on die with eDRAM technology 

– 2.5D / 3D stacked architectures 

– memory module 
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Decoupled Access/Execute Architecture 

 Access processor (AP) handles all memory access 

related functions 

– basic operations are programmable (address 

generation, address mapping, access scheduling) 

– memory details (cycle times, bank organization, 

retention times, etc.) are exposed to AP 

– AP is the “master” 
 

 Execution pipelines (EPs) are configured by AP 

– no need for instruction fetch/decoding 
 

 Tag-based data transfer 

– tags identify configuration data, operand data 

– enables out-of-order access and processing 

– used as rate-control mechanism to prevent 

the AP from overrunning the EPs 
 

 Availability of all operand values in the EP input 

buffer/register triggers execution of the operation 
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Near-Data Acceleration 

Example: FFT 

(sample data in eDRAM) 
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Near-Data Acceleration 

cache hierarchy 
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Example: FFT 

1) Application selects function and initializes 

near-memory accelerator 
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cache hierarchy 

Core Core Core 
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cache hierarchy 

Core Core Core 
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Near-Data Acceleration 

Example: FFT 

1) Application selects function and initializes 

near-memory accelerator 

2) Access Processor configures Execution 

pipeline 

 

3a) Access Processor generates addresses, 

schedules accesses and assigns tags 

‒ read operand data for butterflies 

‒ write butterfly results 

(pre-calculate addresses) 

3b) Execution pipeline performs butterfly 

 calculation each time a complete set of 

 operands is available 
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Near-Data Acceleration 

cache hierarchy 
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Example: FFT 

1) Application selects function and initializes 

near-memory accelerator 

2) Access Processor configures Execution 

pipeline 

 

3a) Access Processor generates addresses, 

schedules accesses and assigns tags 

‒ read operand data for butterflies 

‒ write butterfly results 

(pre-calculate addresses) 

3b) Execution pipeline performs butterfly 

 calculation each time a complete set of 

 operands is available 
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Near-Data Acceleration 

cache hierarchy 
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 calculation each time a complete set of 
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Near-Data Acceleration 

cache hierarchy 
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Example: FFT 

1) Application selects function and initializes 

near-memory accelerator 

2) Access Processor configures Execution 

pipeline 

 

3a) Access Processor generates addresses, 

schedules accesses and assigns tags 

‒ read operand data for butterflies 

‒ write butterfly results 

(pre-calculate addresses) 

3b) Execution pipeline performs butterfly 

 calculation each time a complete set of 

 operands is available 
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Near-Data Acceleration 

cache hierarchy 
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Example: FFT 

1) Application selects function and initializes 

near-memory accelerator 

2) Access Processor configures Execution 

pipeline 

 

3a) Access Processor generates addresses, 

schedules accesses and assigns tags 

‒ read operand data for butterflies 

‒ write butterfly results 

(pre-calculate addresses) 

3b) Execution pipeline performs butterfly 

 calculation each time a complete set of 

 operands is available 
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Near-Data Acceleration 

cache hierarchy 

Core Core Core … 
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Example: FFT 

1) Application selects function and initializes 

near-memory accelerator 

2) Access Processor configures Execution 

pipeline 

 

3a) Access Processor generates addresses, 

schedules accesses and assigns tags 

‒ read operand data for butterflies 

‒ write butterfly results 

(pre-calculate addresses) 

3b) Execution pipeline performs butterfly 

 calculation each time a complete set of 

 operands is available 
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Near-Data Acceleration 

cache hierarchy 
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Example: FFT 

1) Application selects function and initializes 

near-memory accelerator 

2) Access Processor configures Execution 

pipeline 

 

3a) Access Processor generates addresses, 

schedules accesses and assigns tags 

‒ read operand data for butterflies 

‒ write butterfly results 
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Near-Data Acceleration 

cache hierarchy 
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Example: FFT 

1) Application selects function and initializes 

near-memory accelerator 

2) Access Processor configures Execution 
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3a) Access Processor generates addresses, 
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3b) Execution pipeline performs butterfly 

 calculation each time a complete set of 

 operands is available 



© 2014 IBM Corporation HPC User Forum September 2014 21 

Near-Data Acceleration 

Example: FFT 

1) Application selects function and initializes 

near-memory accelerator 

2) Access Processor configures Execution 

pipeline 

 

3a) Access Processor generates addresses, 

schedules accesses and assigns tags 

‒ read operand data for butterflies 

‒ write butterfly results 

(pre-calculate addresses) 

3b) Execution pipeline performs butterfly 

 calculation each time a complete set of 

 operands is available 
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cache hierarchy 

Core Core 
Execution Pipeline Hierarchy 

 Different levels of coupling between access/data 
transfer scheduling and operation execution 
 

 L2 - loosely coupled 

– timing of transfers, execution and write 
accesses (execution results) not exactly 
known in advance to AP 

– requires write buffer 

– rate control based on #tags being “in flight” 
 

 L1 – tightly coupled 

– AP “knows” execution pipeline length 

– reserves slots for write execution results 

– minimizes buffer requirements 

– optimized access scheduling 
    “just in time” / “just enough” 
 

 For completeness 

– L0 – table lookup (pre-calculated results) 

– L3 – host CPU or GPU  

 

Core 
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Near-Data Acceleration 
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Implementation Examples 

 

 On the same die with eDRAM 
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Near-Data Acceleration 
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Programmable state machine B-FSM 

 Multiway branch capability supporting the evaluation 
of many (combinations of) conditions in parallel 

– loop conditions (counters, timers), data arrival, etc. 

– hundreds of branches can be evaluated in parallel 

 Reacts extremely fast: 
dispatch instructions within 2 cycles (@ > 2GHz) 

 Multi-threaded operation 

 Fast sleep/nap mode 

24 

Enabling Technologies 
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B-FSM - Programmable State Machine Technology 

 Novel HW-based programmable state machine 

– deterministic rate of 1 transition/cycle @ >2 GHz 

– storage grows approx. linear with DFA size 

• 1K transitions fit in ~5KB, 1M transitions fit in ~5MB 

– supports wide input vectors (8 – 32 bits) and flexible 

branch conditions: e.g., exact-, range-, and 

ternary-match, negation, case-insensitive 

 TCAM emulation 

 Successfully applied to a range of accelerators 

– regular expression scanners, protocol engines, XML parsers 

– processing rates of ~20Gbit/s for single B-FSM in 45nm 

– small area cost enables scaling to extremely high aggregate 

processing rates 

Source: “Designing a programmable wire-speed regular-expression matching accelerator,” IEEE/ACM int. symposium on Microarchitecture (MICRO-45), 2012 
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Programmable address mapping 

 Unique programmable interleaving of multiple 

power-of-2 address strides 

 Support for non-power-2 number of non-identical 

sized banks and/or memory regions 

 Based on small lookup table (typ. 4-32 bytes) 
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Programmable Address Mapping 
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Programmable Address Mapping 

 LUT size = 4 bytes 

 

 

 

 

 

 

 

 Simultaneous interleaving of row 

and column accesses 

 Example: n=256 

– two power-of-2 strides: 1 and 256 
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... ... ... ... 
784 16 272 528 

... 
16 

 LUT size = 16 bytes 

 

 

 

 

 

 

 

 Simultaneous interleaving of row, 

column, and “vertical layer” accesses 

 Example 

– three power-of-2 strides: 1, 16 and 256 
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Programmable Address Mapping 
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Power Efficiency 

Power 

 Access Processor power estimate for 14nm, > 2GHz: 25-30 mW 

 

Amortize Access Processor energy over large amount of data 

 Maximize memory bandwidth utilization (basic objective of the accelerator) 

– bank interleaving, row buffer locality 

 

 Exploit wide access granularities 

– example: 512 bit accesses @ 500 MHz  [eDRAM] 

– estimated AP energy overhead per accessed bit ≈ 0.1 pJ 

 

 Make sure that all data is effectively used 

‒ improved algorithms 

‒ data shuffle unit: swap data at various 

granularities within one/multiple lines 

(configured similar as EP) 
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Conclusion 

New Programmable Near-Memory Accelerator 

 Made feasible by novel state machine and address mapping technologies 

that enable programmable address generation, address mapping, and access 

scheduling operations in “real-time” 

 Objective is to minimize the (energy) overhead that goes beyond the basic 

storage and processing needs (memory and execution units) 

 Proof of concept for selected workloads using FPGA prototypes and initial 

compiler stacks 

 More details to be published soon 

 


