Memory-Driven Near-Data
Acceleration

and its application to DOME/SKA

Z
<
// o
Christoph Hagleitner

Rik Jongerius ,/// //

DOME / SKA Radio Telescope

-

~0.25M Antennae 0.07-0.45GHz

~0.25M Antennae 0.5-1.7GHz -
Square Kilometer Array. (SKA)

~3000 Dishes 3-10GHz

= The world’s largest:and most sensitive radio telescope
Co-located in South Africa and Australia
. —deployment SKA-1: 2020
- =d

ployment SKA-2:2022+

‘ nment-
earch project betwe

Netherlands Institute for R
(ASTRON)

Source: T. Engbersen et al., “SKA — A Bridge too far, or not?,” Exascale Radio Astronomy, 2014
Image credit: SKA Organisation
2

HPC User Forum September 2014

© 2014 IBM Corporation

DOME / SKA Radio Telescope

Major cycle

Correlator & Visibility 3 Science analysis, user
5 Y

Beamformer 3 processors rmation Interface& archive
»

:so..A:ﬁorm =
»> >-
1-500 =

=
> —
=
=

~ Multi ExaByte scale archive

nimum required Fiops Tiered structure
Archive sites al all major partners

200 PFlops ~ 2.5 EFlops

o et T, == = SWP A=

Ak & =

“m .'1’& ‘.}‘m.

Big Data (~Exabytes/aa32)"aaﬁ Exéscalg,Con}gu
Example: SKA1-Mid begn?i 1 SDP QQ‘E’ZGFPB

= Innovations needed to realize

Sources: R. Jongerius, “SKA Phase 1 Compute and Power Analysis,” CALIM 2014
Prelim. Spec. SKA, R.T. Schilizzi et al. 2007 / Chr. Broekema
Image credit: SKA Organisation

3 HPC User Forum September 2014 © 2014 IBM Corporation

DOME / SKA Radio Telescope

Programmable general-purpose
off-the-shelf technology
o CPU, GPU, FPGA, DSP
+ ride technology wave
do not meet performance and
power efficiency targets

Example Energy Estimates (45nm)

Fixed-function application-

specific custom accelerators

a ASIC

+ meet performance and power
efficiency targets
do not provide required flexibility
high development cost

= 70pJ for instruction (I-cache and register file access, control)
= 3.7pJ for 32b floating-point multiply operation

= 10-100pJ for cache access
= 1-2nJ for DRAM access

Source: M. Horowitz, “Computing’s Energy Problem (and what can we do about it),” ISSCC 2014.

4 HPC User Forum September 2014 © 2014 IBM Corporation

DOME / SKA Radio Telescope

Programmable general-purpose
off-the-shelf technology
o CPU, GPU, FPGA, DSP
+ ride technology wave
do not meet performance and
power efficiency targets

Research Focus

Fixed-function application-

specific custom accelerators

a ASIC

+ meet performance and power
efficiency targets
do not provide required flexibility
high development cost

= Can we design a programmable custom accelerator that outperforms off-the-shelf
technology for a sufficiently large number of applications to justify the costs?

» Focus on critical applications that involve regular processing steps and for which
the key challenges relate to storage of and access to the data structure:

“how to bring the right operand values efficiently to the execution pipelines”

— examples: 1D/2D FFTs, gridding, linear algebra workloads, sparse, stencils

HPC User Forum September 2014 © 2014 IBM Corporation

Memory System
Observations (“common knowledge’)

= Access bandwidth/latency/power depend on complex
Interaction between access characteristics and Pr—p— —
memory system operation Core Core Core
— access patterns/strides, locality of reference, etc. SR e regfile
— cache size, associativity, replacement policy, etc. t t t
L1/L2 L1/L2 L1/L2
""" cache

— bank interleaving, row buffer hits, refresh, etc.
cache cache

= Memory system operation is typically fixed and
cannot be adapted to the workload characteristics

— extremely challenging to make it programmable
due to performance constraints (in “critical path”)

=>» opposite happens: “bare metal” programming to
adapt workload to memory operation to achieve

substantial performance gains

» Data organization often has to be changed between
consecutive processing steps

© 2014 IBM Corporation

HPC User Forum September 2014

Memory System IEM

Programmable Near-Memory Processing

» Offload performance-critical applications/functions to
programmable accelerators closely integrated into the s . e
memory system Core Core Core

1) Exploit benefits of near-memory processing (“closer regfile reg.file reg file
!

to the sense amplifiers” / reduce data movement) } !
L1/L2 L1/L2 L1/L2

2) Make memory system operation programmable such cache cache "~ cache

that it can be adapted to workload characteristics _

3) Apply an architecture/programming model that
enables a more tightly coupled scheduling of
accesses and data operations to match access
bandwidth with processing rate to reduce overhead
(including instruction fetch and decode)

» Integration examples
—on die with eDRAM technology
—2.5D / 3D stacked architectures
—memory module

7 HPC User Forum September 2014 © 2014 IBM Corporation

... Core

Near-Data Acceleration

Decoupled Access/Execute Architecture
‘Core Core

= Access processor (AP) handles all memory access
! ! !
cache hierarchy

related functions
—basic operations are programmable (address
addresses
+ data

generation, address mapping, access scheduling)
—memory details (cycle times, bank organization,

retention times, etc.) are exposed to AP
— AP is the “master”

= Execution pipelines (EPs) are configured by AP
—no need for instruction fetch/decoding

» Tag-based data transfer
—tags identify configuration data, operand data

—enables out-of-order access and processing
—used as rate-control mechanism to prevent

the AP from overrunning the EPs

= Availability of all operand values in the EP input
buffer/register triggers execution of the operation
© 2014 IBM Corporation

HPC User Forum September 2014

Near-Data Acceleration

Example: FFT
(sample data in eDRAM)

cache hierarchy

addresses
+ data

© 2014 IBM Corporation

HPC User Forum September 2014

Near-Data Acceleration

Example: FFT
1) Application selects function and initializes

near-memaory accelerator

addresses
+ data

© 2014 IBM Corporation

HPC User Forum September 2014

10

Near-Data Acceleration

Example: FFT

1) Application selects function and initializes
near-memory accelerator

2) Access Processor configures Execution cache hierarchy
addresses

pipeline ldress:

© 2014 IBM Corporation

11 HPC User Forum September 2014

Near-Data Acceleration

Example: FFT

1) Application selects function and initializes
near-memory accelerator

2) Access Processor configures Execution cache hierarchy
addresses

pipeline ldress:

© 2014 IBM Corporation

12 HPC User Forum September 2014

Near-Data Acceleration

Example: FFT
1) Application selects function and initializes Core Core --- Core
near-memory accelerator 1 1

2) Access Processor configures Execution cache hierarchy
addresses

pipeline ldress:

3a) Access Processor generates addresses,
schedules accesses and assigns tags
—read operand data for butterflies
: operand 1
—write butterfly results tag O
(pre-calculate addresses)

Butterfly Unit

3b) Execution pipeline performs butterfly
calculation each time a complete set of
operands is available

13 HPC User Forum September 2014 © 2014 IBM Corporation

Near-Data Acceleration

Example: FFT
1) Application selects function and initializes Core Core --- Core
near-memory accelerator 1 1

2) Access Processor configures Execution cache hierarchy
addresses

pipeline ldress:

3a) Access Processor generates addresses,
schedules accesses and assigns tags
—read operand data for butterflies
: operand 2
—write butterfly results tag 1
(pre-calculate addresses)

Butterfly Unit

3b) Execution pipeline performs butterfly
calculation each time a complete set of
operands is available

14 HPC User Forum September 2014 © 2014 IBM Corporation

Near-Data Acceleration

Example: FFT
1) Application selects function and initializes Core Core --- Core
near-memory accelerator 1 1

2) Access Processor configures Execution cache hierarchy
addresses

pipeline ldress:

3a) Access Processor generates addresses,
schedules accesses and assigns tags
—read operand data for butterflies .
: twiddle factor
—write butterfly results tag 2
(pre-calculate addresses)

Butterfly Unit

3b) Execution pipeline performs butterfly
calculation each time a complete set of
operands is available

15 HPC User Forum September 2014 © 2014 IBM Corporation

Near-Data Acceleration

Example: FFT
1) Application selects function and initializes Core Core --- Core
near-memory accelerator i 1 1

2) Access Processor configures Execution cache hierarch _
all operands available

pipeline =>» processing starts

3a) Access Processor generates addresses,
schedules accesses and assigns tags
—read operand data for butterflies
—write butterfly results
(pre-calculate addresses)

Butterfly Unit

3b) Execution pipeline performs butterfly
calculation each time a complete set of
operands is available

16 HPC User Forum September 2014 © 2014 IBM Corporation

Near-Data Acceleration

Example: FFT
1) Application selects function and initializes Core Core --- Core
near-memory accelerator 1 1

2) Access Processor configures Execution cache hierarchy
addresses

pipeline ldress:

3a) Access Processor generates addresses,
schedules accesses and assigns tags
—read operand data for butterflies
: result 1
—write butterfly results tag 4
(pre-calculate addresses)

Butterfly Unit

3b) Execution pipeline performs butterfly
calculation each time a complete set of
operands is available

17 HPC User Forum September 2014 © 2014 IBM Corporation

Near-Data Acceleration

Example: FFT
1) Application selects function and initializes Core Core --- Core
near-memory accelerator 1 1

2) Access Processor configures Execution cache hierarchy
addresses

pipeline ldress:

3a) Access Processor generates addresses,
schedules accesses and assigns tags
—read operand data for butterflies
—write butterfly results
(pre-calculate addresses)

Butterfly Unit

result 2

3b) Execution pipeline performs butterfly
calculation each time a complete set of
operands is available

18 HPC User Forum September 2014 © 2014 IBM Corporation

Near-Data Acceleration

Example: FFT
1) Application selects function and initializes Core Core --- Core
near-memory accelerator 1 1

2) Access Processor configures Execution cache hierarchy
addresses

pipeline ldress:

3a) Access Processor generates addresses,
schedules accesses and assigns tags
—read operand data for butterflies
—write butterfly results
(pre-calculate addresses)

Butterfly Unit

3b) Execution pipeline performs butterfly
calculation each time a complete set g

operands is available butterfly
calculations

19 HPC User Forum September 2014 © 2014 IBM Corporation

Near-Data Acceleration

Example: FFT
1) Application selects function and initializes Core Core --- Core
near-memory accelerator 1 1

2) Access Processor configures Execution cache hierarchy
addresses

pipeline ldress:

3a) Access Processor generates addresses,
schedules accesses and assigns tags
—read operand data for butterflies .
: twiddle factor
—write butterfly results tag 2 - reuse flag
(pre-calculate addresses)

Butterfly Unit

3b) Execution pipeline performs butterfly
calculation each time a complete set of
operands is available

20 HPC User Forum September 2014 © 2014 IBM Corporation

Near-Data Acceleration

Example: FFT
1) Application selects function and initializes Core Core --- Core
near-memory accelerator 1 1

2) Access Processor configures Execution cache hierarchy
addresses

pipeline ldress:

3a) Access Processor generates addresses,
schedules accesses and assigns tags
—read operand data for butterflies
: result 1 operand 4
—write butterfly results tag 4 tag O
(pre-calculate addresses)

Butterfly Unit

3b) Execution pipeline performs butterfly direct forwarding
calculation each time a complete set of
operands is available

21 HPC User Forum September 2014 © 2014 IBM Corporation

Near-Data Acceleration

Execution Pipeline Hierarchy
. . Core Core Core L3
» Different levels of coupling between access/data ‘ ‘ 1

transfer scheduling and operation execution

cache hierarchy

= |2 -loosely coupled adgaegtges

— timing of transfers, execution and write
accesses (execution results) not exactly
known in advance to AP

— requires write buffer
— rate control based on #tags being “in flight”

L1 — tightly coupled

— AP “knows” execution pipeline length

— reserves slots for write execution results
— minimizes buffer requirements

— optimized access scheduling
“‘just in time” / “just enough”

For completeness
— LO - table lookup (pre-calculated results)
— L3 -host CPU or GPU

22 HPC User Forum September 2014 © 2014 IBM Corporation

Near-Data Acceleration

Implementation Examples
= 3D stack

DRAM
DRAM
DRAM

DRAM
Logic (AP/EP)

= On the same die with eDRAM

i}gﬁ At
y 4

SRS
] Z

23 HPC User Forum September 2014 © 2014 IBM Corporation

Enabling Technologies

Programmable state machine B-FSM

= Multiway branch capability supporting the evaluation
of many (combinations of) conditions in parallel

— loop conditions (counters, timers), data arrival, etc.
— hundreds of branches can be evaluated in parallel

» Reacts extremely fast:
dispatch instructions within 2 cycles (@ > 2GHz)

= Multi-threaded operation
» Fast sleep/nap mode

condition instruction |

vector vector

address
I register mapper
file

bus control +—
memory control +—>

24

B-FSM engine

Coe Coe - Core

‘ cache hierarchy

addresses
+ data

© 2014 IBM Corporation

» Novel HW-based programmable state machine
—deterministic rate of 1 transition/cycle @ >2 GHz
—storage grows approx. linear with DFA size

1K transitions fit in ~5KB, 1M transitions fit in ~5MB
—supports wide input vectors (8 — 32 bits) and flexible
branch conditions: e.g., exact-, range-, and
ternary-match, negation, case-insensitive
= TCAM emulation

» Successfully applied to a range of accelerators
—regular expression scanners, protocol engines, XML parsers
—processing rates of ~20Ghit/s for single B-FSM in 45nm
—small area cost enables scaling to extremely high aggregate

processing rates D)

B-FSM data structure

DFA

Source: “Designing a programmable wire-speed regular-expression matching accelerator,” IEEE/ACM int. symposium on Microarchitecture (MICRO-45), 2012

25 HPC User Forum September 2014 © 2014 IBM Corporation

Enabling Technologies

Programmable address mapping

= Unique programmable interleaving of multiple
power-of-2 address strides

= Support for non-power-2 number of non-identical
sized banks and/or memory regions

» Based on small lookup table (typ. 4-32 bytes)

B-FSM engine |

instruction |
vector

condition
vector

| register
file

address
mapper

bus control +—
memory control +—>

26 i ; © 2014 IBM Corporation

Programmable Address Mapping THM

internal
bank
address

bank id.

address space

address v l
Lookup
table
internal bank address bank id.

27 HPC User Forum September 2014 © 2014 IBM Corporation

Programmable Address Mapping =N

» LUT size = 4 bytes

- N\ 2l 1024
ay,, @y ay ... &y Il 263 775
6 518 774
d3; @dzp @dgz ... Az 773 261
SR : 4
3
\aml Am2 Qmg - amy 2
1
o 0 W 256 768
0] 1 2

memory banks
» Simultaneous interleaving of row

and column accesses

» Example: n=256
—two power-of-2 strides: | and 256

28 HPC User Forum September 2014 © 2014 IBM Corporation

Programmable Address Mapping IER

» LUT size = 16 bytes

Pids] 1024
L L - - N - § .- B -
/'/ Y8 64 M 320 576 832
/ k) 575 |
A - i I
/ Y 304
A a7 550 |
/ , - - N - N N
/ <yl 544 W 800 | | 288 |
/ il 31 W 287 543 799
if 784 |
= Simultaneous interleaving of row, 15
column, and “vertical layer’ accesses - - B - - B -
y 5
= Example 4
—three power-of-2 strides: 1, 16 and 256 Sl 29 515
P 2
1
O o0 W 256 512 768
0 1 2 3

memory banks

29 HPC User Forum September 2014 © 2014 IBM Corporation

Power Efficiency

mW

Power
= Access Processor power estimate for 14nm, > 2GHz:

Amortize Access Processor energy over large amount of data
» Maximize memory bandwidth utilization (basic objective of the accelerator)

—bank interleaving, row buffer locality

» Exploit wide access granularities
— example: 512 bit accesses @ 500 MHz [eDRAM]

— estimated AP energy overhead per accessed bit

= Make sure that all data is effectively used
shuffle unit

— improved algorithms
— data shuffle unit: swap data at various
granularities within one/multiple lines

(configured similar as EP)

© 2014 IBM Corporation

HPC User Forum September 2014

30

Conclusion

New Programmable Near-Memory Accelerator

» Made feasible by novel state machine and address mapping technologies
that enable programmable address generation, address mapping, and access
scheduling operations in “real-time”

= Objective is to minimize the (energy) overhead that goes beyond the basic
storage and processing needs (memory and execution units)

= Proof of concept for selected workloads using FPGA prototypes and initial
compiler stacks

» More details to be published soon

31 HPC User Forum September 2014 © 2014 IBM Corporation

