“Double Rewards”

of Porting Scientific Applications
to the Intel MIC Architecture

Troy A. Porter
Hansen Experimental Physics Laboratory
and
Kavli Institute for Particle Astrophysics and Cosmology
Stanford University

Work in collaboration with Andrey Vladimirov (Colfax International)

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Intel MIC Architecture

Intel Xeon processors (multi-
core CPUs)

C/C++/Fortran; OpenMP/MPI
Standard Linux OS

> 512 GB of DDR3/4 RAM
Up to 18 cores at ~ 3 GHz
2-way SMT

256-bit AVX vectors

e

Intel Xeon Phi coprocessors (Many
Integrated Core, or MIC)

* (C/C++/Fortran; OpenMP/MPI
* Special pOS Linux

* 6-16 GB of onboard GDDR5
e 57to 61 cores at~ 1 GHz

* 4-way SMT

* 512-bit IMCI vectors

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Same Code, Better Performance

Lh

For highly parallel applications

0x . T I I T I

Baseline: optimized code w/ICPC on host: 4 4%
0.62 ms per transient spectrum

Same code for CPU and MIC 40x

° ° ° ° ° . SOX ; 28 é
Similar optimization strategies : 7 :

2.0x [1.9% &

Relative Performance

Xeon Phi is 2x-3x faster than : |
Xeon CPU of comparable cost Lox b 1.0x i
and thermal design power : :

- 03x
0.0x t
Host, Baseline: Coprocessor, Host + Host +
Theoretical peak perfOrmance: GCC Host, ICPC pICPC COPIoCesSor 2 COpProcessors
1 TFLOP/s in DP (75% usable); s IS
350 GB/s on-board RAM Case study: HEATCODE

bandwidth (50% usable)

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Programming Models for the MIC Architecture

#include <stdio.h>

/// \\\ #include <unistd.h>

Native Model int main(){
application runs directly printf("Hello world! I have %ld logical cores.\n",

ON COProcessor sysconf (_SC_NPROCESSORS_ONLN)) ;

'y
Use Xeon Phi as an user@host’% icc hello.c -mmic
independent compute node user@hosty, scp a.out mic0:7/
\\¥ 4// user@hosty% ssh micO

user@mic0j ./a.out
Hello world! I have 240 logical cores.

user@mic0y,

(7 Host CPUs "\ /- Xeon Phi coprocessor \\ /~ - Xeon Phi coprocessor)
MP| NS OpenMP M OpenMP \
MPI OpenMP]
K WPy B b |
' |
. MPI t
\ WiFs P LN A\ yall
Compute Node 1) f
\Compute Node 2 / :

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Programming Models for the MIC Architecture

#include <stdio.h>

int main(int argc, char * argv
) (g gvll) {
Offload Models printf("Hello World from host!\n");
. . # load t t(me
application runs on host, 3 m;?m DEftesd Rargetinel
communicates W/COpFOCESSOF printf ("Hello World from coprocessor!\n"); fflush(0);
J }
printf ("Bye\n"); .
i
. user@host’ icpc hello_offload.cpp -o hello_offload
xplicit offloa - user@host’, ./hello_offload
Explicit offload Virtual-shared .
(pragma—based) Memory Hello World from host!
Bye
Hello World from coprocessor!
(/ Host CPUs / Xeon Phi coprocessor——_"\ /" Xeon Phi coprocessor N

MPI Offload OpenMP

MPI OpenMP

\

_ MPI

Compute Node 1
Compute Node 2

&.

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Case Study: Building a 3D Model of the Milky Way
Galaxy using 2D Sky Surveys

Goal: build a 3D model of the Milky Way Galaxy using a
large volume of 2D data from sky surveys.

Andromeda galaxy (left) and the Milky
. Way (below) seen at near infrared

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Case Study: Building a 3D Model of the Milky Way
Galaxy using 2D Sky Surveys

Goal: build a 3D model of the Milky Way Galaxy using a
large volume of 2D data from sky surveys.

HAN
)
=
=
o
)
jab)
=
2]
)
(@)
wn

One of possible realizations of 3D models
of the Milky Way Galaxy
(cosmic dust luminosity map calculated by
the FRaNKIE code)

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Case Study: Building a 3D Model of the Milky Way

Galaxy using 2D Sky Surveys

Goal: build a 3D model of the Milky Way Galaxy using a
large volume of 2D data from sky surveys.

Method: Bayesian inference. Simulate the
Galaxy, assess the fit to data, refine 3D model |
parameters, rinse & repeat.

sJastedo[y O

Challenge: modeling the process of stochastic
heating of cosmic dust by starlight, in each voxel
of a 3D grid, is very time consuming.

With unoptimized code, hundreds of CPU-years [Bil clzi il s

for each run : of the Milky Way Galaxy
) " (cosmic dust luminosity map calculated by

the FRaNKIE code)

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Software Stack for Modeling Galactic 3D Structure

MultiNest
Bayesian analysis engine
Scales to O(10) nodes

FRaNKIE
radiation transport Monte Carlo
Scales to multiple cores in 1 node

HEATCODE
| cosmic dust heating library
Multiple Xeon Phi coprocessors in 1 node

Xeon_
Phi

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Accelerating Radiation Transport Models

for the Milky Way

Solution: use a computing accelerator, optimize existing code.

R L A B e R S D o e e e L e B S R e B R P R e,

Hundreds of
CPU-years

Calculation of Stochastic Heating and Emissivity of Cosmic Dust Grains
with Optimization for the Intel Many-Core Architecture

Result: HEATCODE Troy A. Porter!, Andrey E. Vladimirov'

. Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085, USA
(HEterOgeneous AI‘ChltEC- Colfax International, 750 Palomar Ave, Sunnyvale, CA 94085, USA

ture library for sTochastic
glos
.0t

COsmic Dust Emissivity)
(open source, code soon to ?(r
b e ubhshe d) Ll }&! heir absorption of starlight produces emission spectra from t
p “ttp properties of the dust grains, and spectrum of the heating radiation field.

missions by very small grains. Modeling the absorption of starlight by these j Hundreds Of
however, computationally expensive ind a significant bottleneck for self-consistent radiation transport codes treating

of dust by stars Tn this pap~r we summarize the formalisrn for computine the stochastic emissivity of cosmic dust, CPUdays

1 T " e

st

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Stochastic Dust Grain Heating

)

* Small grains (<0.1 pm) are
important

"

(UOISSTUIS ¥[) suonisueI) Furjoo,)

* Absorption and re-emission
is stochastic (non-thermal)

* Grains undergo
“temperature” spikes,
characterized by temperature
distribution

Heating transitions (UV absorption)

Vibrational energy (“grain temperature”)

* Evaluation is
computationally expensive

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Calculation of Stochastic Dust Emissivity

10" 10" 10! 102 10°
10° Blackbody o ined ™ Tncident ra%ﬁ;m field
S 8 g (re-normalized) AH graing --- -
* Input: incident electromagnetic - S gk v
radiation field 2 R T
i e
! v 4 '\f,pi
. e e L9
* Intermediate: “temperature” L ——— =
distribution of grains of all sizes [=7~ H
; h 'H' .:E.' BB “
: . .
° Output: spectrum of re-emitted 3 AN
photons o p— -
Com osite § "
(Mathis et 983) :‘"’“ :
TR S | L i:,-:;"-
* Method and absorption cross o N 27
sections: Draine et al. (2001),

ApJ, 551, 807 "

Wavelength A, um

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Matrix Formalism for Stochastic Dust Emissivity

* Stage 1:
Interpolate (in log
space) and convolve the
incident RF with the
photon absorption cross
sections

° Stage 2:
form and solve a quasi-
triangular system of linear
algebraic equations for the
“temperature” distribution

° Stage 3:

convolve the
“temperature”
distribution with the
grain size distribution
and emissivity function

3
Ty =1 (/1)0'(/1)/1 AEHI for u>L
I(Do(A) = QD)
[Q1) log (/1//1;—1) [Q1))
log = log
Q(/Ij—l) log(ﬁ;//bq) Q(/Ij_l)

ZngPj—ZTﬁPi:O

J#i J#L

TU':O, if i<j—1

M
Byj = ZTkj >0

Z ByiX;

T(f-l)f =

M
VF,(¥) = o(v)) | PA@)A(, E))

0, if E;<hy,
AW, E) ={ 2m* P;
c? exp(hv/kT;) -1

Amax

vF(v) = vaa(V)Q(a)da

Qmin

transcendental operations

Spdrse memaory dCcess

dense linear algebra

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Optimization Roadmap

HEATCODE Benchmarks

3104? * Scalar Optimization
210, * Vectorization

| MUST

3ol OPTIMIZE -

= | * Thread Scalability
£

.

el e Memory Access

- UNOPTIMIZED

Dual-socket Intel Xeon E5-2670 CPU
(16 cores total)

* Communication

Versus
Intel Xeon Phi 5110P coprocessor (60 cores)

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Scalar Optimization: Strength Reduction,

Precomputation, Optimized Transcendentals

UNOPTIMIZED Combinatorial (non-vectorizable)
IMPLEMENTATION y)utation of the index

for (int =0; 1< f; i++) { /* Orjginal, unoptimized implementation */
const double = grainWavele h[gl*tempBins*tempBins + f*tempBins + 1];
if (wl >= wavelength[0] && <= wavelength[wlBins-1]) {
/* The usage of std: wer bound precludes automatic vectorization */
const float* = std::lower bound(&wavelength[0], &wavelength[wlBins-1], wl);
const int = wlval — &wavelength[O0];
const double = radiationField[j]*absorptionCrossSection[gI*wlBins + J];
const double = radiationField[j]*absorptionCrossSection[gl*wlBins + J-1];
if ((upper > 0) && (lower > 0)) { /* Power-law interpolation */
weightedRadiationField[gI*tempBins*tempBins + f*tempBins + i] =

exp(log(lower) + (log(upper) — log(lower))*
(log(wl) — log(wavelength[j-1]))/(log(wavelength[]]) — log(wavelength[]-1])));

} oy}

Natural base logarithms / Eight transcendental

and exponentials functions, one division
| per evaluation

Loop in “I” is not vectorizable

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Scalar Optimization: Strength Reduction,

Precomputation, Optimized Transcendentals

OPTIMIZED Precomputed index
IMPLEMENTATION

/* Optimized implementation */
const float = radiationFieldj}q]*absorptionCrossSection[gI*wlBins + j];
const float = radiationFiedd[j]*absorptionCrossSection[gI*wlBins + J-1];
if (upper > 0.0f) && (lower 0.0f) { /* Single precision constants */

const double = log2f (upper/lower); /* Single precision functions */

for (int = 0; c £ A4Count; c++) { /* This loop will be partially vectorized */
const int nterpolationPatternIndex[qgCtr + c]; /* Precomputed indices */
weightedRadiationField[idx] = lower*exp2f (dLogUppemrLower*interpolationOffs[qgCtr+c]);
} [} } /* Base 2 exponential and logar%ﬁﬂﬁ optimized for Xeon and Xeon Phi */

Base 2 logarithms

and exponentials Two transcendental

functions, one division
per evaluation

Loop in “c” is vectorizable

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Vector Optimization: Alignment and Hints

In Xeon Phi, memory
access works best on 64-
byte aligned addresses

By default, compiler does
not assume alignment

Hint to compiler that data
is aligned improves
performance

Additional automatic
vectorization hints

/* Aligning data on 64-byte boundary */
float>* =(float*) mm malloc

tempBins*tempBins*sizeof(float), 64);
assert (tempBins%16==0);

/* Guarantee alignment to compiler;

Estimate loop count for optimal

vectorization strategy */

#pragma vector aligned

#pragma loop count min(16)

for (int = 0; 1 < iMax; ++i) {
rSum[i] += bMatrix[f*tempBins + 1i];
bMatrix[f*tempBins + i] = rSum[i];

}

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Vector Optimization: Loop Pattern

* 512 bits vector holds 16 single precision FP numbers
* HEATCODE: padded loop bounds to a multiple of 16 iterations

Unoptimized Loop Pattern

Optimized Loop Pattern

0 - 0 .
b | Heating terms Heating terms
:- Calculation Pattern —— < Calculation Pattern ——
e Main Diagonal ----- > Main Diagonal -----
ﬁ- - .
r——— -
I ————-
—- i, -
i -
16 i 16 E
" - >
5] 5] -
> >
2 2 =
E E 2
k= . i= >
B~ A = =
32 NG 32 -
48 ity 48 3
0 32 32 48

Initial level i

Initial level i

Figure B.22: Pattern of nested loops in £ and i in the first example in Figure B.21 before and after optimization. The optimized loop pattern always has a multiple
of 16 iterations in the inner vectorized loop, which is beneficial for performance.

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Vector Optimization: Loop Pattern

* 512 bits vector holds 16 single precision FP numbers
* HEATCODE: padded loop bounds to a multiple of 16 iterations

/* Unoptimized: traversing matrix
below the main diagonal */
for (int = fMax; f >= 1; --f) {

/* Compiler will implement checks
for value of f, and peel the i-loop
if £ is not a multiple of 16 */
for (int = 0; 1< f; ++1i) {
rSum[i] += bMatrix[f*tempBins + 1i];
bMatrix[f*tempBins + 1] = rSum[i];
}
}

/* Optimized: inner loop always has
a multiple of 16 iterations */
for (int = fMax; f >= 1; --f) {
const int = (f-1)+(16-(f-1)%16)-1;
const int =

(uB<=tempBins ? uB : tempBins-—1);

for (int 1 = 0; 1 <=iMax; ++i) {
rSum[i] += bMatrix[f*tempBins + 1i];
bMatrix[f*tempBins + i] = rSum[i];
}

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Threading Optimization: Exposing Parallelism

* Using an OpenMP parallel region inside of #pragma offload
* Distribute independent incident spectra across threads

° Modified the library interface to accept an array of spectra
instead of a single spectrum

#pragma offload target(mic)..
{
#pragma omp parallel for schedule(dynamic)
for (int = 0; 1 < nSpectra; i++) {
InterpolateWeightedRF (wlBins, iRF, ...);
CalculateTemperatureDistribution(...);
ComputeEmissivity (...);

}

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Threading Optimization: Reducing Per-Thread

Memory Footprint

* Problem: 240 threads do not fit Memory

in onboard Xeon Phi memory S C]=] T WSEAMLON FIOSE s
* Not an issue on the CPU host! 24 GBT
* Solution: reduce per-thread 16 GB1+RAM on L0 stimized
memory footprint g GRLGORIOCESSOl b

* How: inter-procedural fusion T
to eliminate unnecessary scratch host / 60

120 180 240 \

. # of thr Mi
data passed between functions of threads ¢
InterpolateWeightedRadiationField() { RadiationFieldToTemperatureDistribution() {
for (int i = 0; i < gIMax; i++) for (int i = 0; i < gIMax; i++)
{ /* .. */ }} ‘ {
/* .. InterpolateWeightedRadiationField .. */

gIMax ‘J
weightedRadiationField ‘ ([weightedRadiationField J
/*

.. CalculateMatrices .. */

CalculateMatrices () {
for (int i = 0; i < gIMax; i++)
{ /* .. */ }} l [transientMatrix m

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Memory Traffic Optimization: Loop Tiling

/* Convolution of temperature distr.
with emissivity function in the
HEATCODE library (UNOPTIMIZED) */

for (int i = 0; i < wlBins; ++i) {
float sum = 0.0f;
for (int 7 = 0; j < gIMax; ++3J) {

const float scaling = ...[1,]];
float result =
for (int k = 0;
result +=
planck[i*tempBins + k]*
distribution[j*tempBins + k];

0.0f;
k < tempBins; ++k)

sum += result#*scaling;

}

trans[i] =

}

sum*wavelength[i]*units;

T “Before”

“After” —

/* OPTIMIZED w/double loop tiling */
for (int 77=0; jj<gIMax; jj+=jTile) {
for (int 11=0; 1ii<wlBins; ii+=iTile){
float result[iTile*jTile];
for (int ¢ = 0; c<iTile*jTile; c++)
result[c] = 0.0f;

#pragma simd
for (int k =0

; kK < tempBins; ++k)
for (int ¢ = 0;

c < iTile; c++) {

result[(0)*iTile + c] +=
distribution[(jj+0)*tempBins+k]*
planck[(ii+c)*tempBins+k];
result[(1l)*iTile + c] +=
distribution[(jj+1)*tempBins+k]*
planck[(ii+c)*tempBins+k];
result[(2)*1iTile + c] +=
distribution[(jj+2)*tempBins+k]*
planck[(ii+c)*tempBins+k];
result[(3)*iTile + c] +=
distribution[(jj+3)*tempBins+k]*
planck[(ii+c)*tempBins+k];

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Communication Optimization: Data Persistence

/* Offload pragma in HEATCODE,
data marshaling directives */
tpragma offload target(mic)

in(rfArray : \
length(n*rfBins)) \

out (emissivityArray : \
length(n*rfBins)) \

in(absorptionCrossSection : \
length(gIMax*wlBins))

{ ...}

/* Offload pragma in HEATCODE, optimized
using data and memory persistence */
fpragma offload target(mic:iDevice)

in(rfArray : \

length(n*rfBins) alloc_if(0) free if(0)) \
out (emissivityArray : \
length(n*rfBins) alloc_if(0) free if(0)) \

in(absorptionCrossSection : \
length(0) alloc_if(0) free if(0))
{ ...}

T Unoptimized:

For every offload,
e Send/receive input & output
e Send model data
e Allocate/deallocate memory

T Optimized:

For every offload,

e Send/receive input & output

e Re-use previously sent model data

* Retain memory for use in next offload

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Optimization: Heterogeneous Computing with the

Offload Model

e Use all available compute devices: CPU + two Xeon Phi

e Same offloaded code in C language for both platforms

e For load balancing, split work into chunks (~10* spectra in
each), use “boss-worker” model to dynamically distribute chunks

#pragma omp parallel for n threads(3) schedule(dynamic,1)
for (int = 0; i < nChunks; i++) {

int = omp_get thread num();

#pragma offload target(mic: iDevice) if (iDevice > 0)

{ ...}

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Guided Optimization: VTune

e Intel Vtune Amplifier XE — per-
formance analysis for thread-parallel
applications on Intel CPUs and
Xeon Phi coprocessors

 Finds bottlenecks down to a single
line of code

* Diagnoses performance issues:
cache misses, bandwidth utilization,
vectorization intensity

e Uses hardware event-based data
collection: does not slow down ap-
plication

Intel Vtune Parallel Amplifier XE

General Exploration - Knights Corner Platform

|dentify where microarchitectural issues affect the performance of your application.
Press F1 for more details.

Analyze general cache usage
Analyze vectorization usage
Analyze TLB misses

Analyze additional L2 cache events

Function [Call Stack CPU Timew *
* thXeonPhi::Radiation FieldoTemperatureDistr| 659.011s [—
P> thXeonPhi:: CalculateE missivity 202.414s [
P _intel_Irb_memset 124.030s I
P kmp wait_sleep 79.249s [l
P kmp_static_yleld 46179500
P kmp_yield 5.722s
239 #ifdef HAVE ICC
240 #pragma simd reduction{+: sum)
241 #pragma vector aligned
242 #endif
243 for {int i = 8; i < tempBins; ++i) 8.850s @
244 sum += bMatrix[f*tempBins + i]*x[i]; 70.599s (N
245
246 /¢ rTransientMatrixOverDiagonal contains
247 {f lor zeroces if enthalpylelta == 8, whi
248 x[f] = sum*rTransientMatrixdverDiagonal [4.325s)

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Performance, voxels/second

“Double Rewards” of Optimization for MIC

HEATCODE Benchmalrks
4| same C++ code

10 /\

L

v 1.9%r

)

- UNOPTIMIZED OPTIMIZED

Dual-socket Intel Xeon E5-2670 CPU
(16 cores total)
Versus
Intel Xeon Phi 5110P coprocessor (60 cores)

After optimization,

performance on Xeon Phi
620x better

But the same code is also
125x faster on the Xeon

CPU

Acceleration factor 1.9x

One code for both
platforms, same
methods of optimization

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Performance, voxels/second

Compute Density and Efficiency

HEATCODE Benchmarks

A

10° ;
, CPU
10%} :
; eon
Phi

UNOPTIMIZED OPTIMIZED HETEROG.

Dual-socket Intel Xeon E5-2670 CPU
(16 cores total)
versus

Intel Xeon Phi 5110P coprocessor (60 cores)

Multiple coprocessors
and heterogeneous
computing with only one
optimized code

Improvement of
compute density and
power efficiency

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Incremental Porting and Optimization

| Unoptimized ! Thread Parallelism: Scalar Optimizations: Vectorization: ' Heterogeneous:
with Fit All Threads Precomputation, Alignment, Using Host +
10° L Offload in Memory Precision Control Padding, Hints + Two Coprocessors|
- P
60“?“ et oL I .---."l'. .
2 RG2S
% 10 — {ﬁﬂ:l'bee:,..ll- ‘-1"'-,|-1.lllllﬂlllll.l-l' =
| o .m'l"l"::-tlt."m "
m .-’-"'!.
9 i\m'.'\"' '.““‘l,...lllluuiv.bllllnluuuu,‘l
g ‘\'.i\ ¢ ‘ ansd léptl[nlze GCC
g \.‘\ o .-
% 1 0 1 i ot } ‘\O\’ _‘.;—.".' “‘1. + }
= JICRCHT o0 e L
[.
g O?Ufmrl' ..m-nmmm-l-ltl.‘ »* ‘u\n‘ -
’\‘\ 0‘" n |l| ".‘

E ' ,m*‘ o . okl Baseline: unoptimized,
8 - compiled with GCC

10° |

o running on host

S | (59 ms per spectrum)
@
v _ _
Algorithm Improved Memory Access: Offload Traffic:

10! L Optimization: Interpolation Method: Packed Data, Data Persistence |
- Pruning, Recurrence Packed Operations Loop Tiling on Coprocessor]

| | I | | I | | l

0 1 2 3 4 5 6 7 8

Optimization Step

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Future-Proofing Applications for Knights Landing

Tomorrow

22nm process PCle coprocessor 14nm Standalone CPU

* Future MIC product: codename Knights Landing

* 14nm Tri-Gate technology. In the past, smaller transistors led to
more cores in CPUs.

* Available as stand-alone chip and as PCle-endpoint coprocessor

* Instruction set AVX-512 published

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Summary

Intel MIC — accelerator architecture for highly parallel
application with support for C/C++/Fortran, OpenMP/MPI

Same code and same optimization strategies for MIC and
for multi-core CPU architectures — “double rewards”

Optimization areas include: scalar math, vectorization,
thread scalability, memory traffic and communication

Porting for Xeon Phi prepares application for future product
Knights Landing (KNL) — MIC platform, 14 nm technology,
possibility of usage as a stand-alone processor

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

Memory Traffic Optimization: Loop Tiling

/* Nested loops without tiling.
Array B[] does not fit into cache */
for (int 1 = 0; i < iMax; ++i)

for (int | = 0; j < jMax; ++j)

E_i
N

[* Tiled nested loops */
for (int || = 0; jj < jMax; jj

+=T)

for (int 1 = 0; i < iMax; ++i)
for (int] =Jj; j < jj+T; ++j)

arrayv A array B

~N~o uhbhwNEFro@®

ot

—PerformWork(Alil, B[j]).

Example: ® array A array B
tile size T=2 0 * ﬁ
cachesize=3 | 1 DD (DI
.Cache Misses 2 _ _
m. |G ([] [T[]
4] BT
s O] [T
o LI B IIT]
- 7 (W (W

Cache Hit Rate = 6/16
SLOWER

Cache Hit Rate = 10/16

FASTER

Troy A. Porter, Stanford University — “Double Rewards” of Porting Scientific Application to the Intel MIC Architecture — September 17, 2014

