HPC in Poland: 2014 update

Marek Niezgódka

ICM, University of Warsaw marekn@icm.edu.pl

Seattle, HPC User Forum, September 16, 2014

HPC in Poland: 2014 update

- Funding 2008-2014:
 - HPC for research \$200M+
 - Other e-infrastructures for academia \$400M+
 - e-infrastructures for government and administration \$1.5-2B
- 2015-2022 programs: continuation focused on operations and R&D

Priorities (academia):

Capacity infrastructure:

- Cracow (Cyfronet)
- Poznan (PSNC)
- Gdansk (TASK)
- Wroclaw (WNSC)
- Swierk (NNRC, energy)

• Capability facility:

• Warsaw (ICM)

Some background

- 1993: National Research ICT Infrastructure program launched
- 1994: 5 HPC centers operational
- 1996: National optical networking infrastructure program launched
- 1997: Virtual Library of Science started
- 2007: Research Infrastructures: Operational Programs (cohesion, budget)
- 2013: Competence centers founded
- Current aggregated capacity (selection):
 - Cyfronet: .5 PF (2+ PF coming)
 - ICM: .5 PF (2+ PF coming)
 - PSNC: 150 TF (subject expansion)
 - In addition, TASK (150 TF), WNSC (100 TF), NCNR (180 TF)

Coordinated concept: competence centers

- High Performance Networking: PSNC
- Capacity computing services: Cyfronet
- Capability computing and data-based services: ICM
- Foundation: POWIEW and PL-GRID R&D programs (*completed*):
 - Complementary HPC infrastructures
 - Joint job management concept
 - National services
- e-Infrastructure roadmap 2014-2024

OSIRIS: ICM's roadmapping 2022

- Distributed, scalable e-infrastructure for data-driven open science
- National partnership coordinated by ICM
- Core : ICM's OCEAN infrastructure for data research
- Multiple e-infrastructure layers:
 - Storage and retrieval services
 - HPD Analytics feasibility
 - Big data based HPC
- Integrating role of the competence centers: operations, development, consulting, research and education

OSIRIS concept outline

- Academia:
 - Data science programs
 - Open science models
 - Special focus: digital humanities and social sciences
 - Partnership with public sector and industry
- Non-academic partners:
 - government agencies, public administration
 - business and industry
 - NGOs
- Industry benefits:
 - access to open data repositories, including open government data deposited
 - business intelligence solutions,
 - access to comprehensive research information systems (OpenAIRE, Infona, PBN)
 - access to open research data, tools and solutions

OCEAN program (2013+)

- Centre for Data, their Analysis and Computational Modelling
- National data infrastructures:
 - OSIRIS roadmap
 - Research: INFONA integrated platform
 - Government: CRIP public data platform
- HighPerformance data analytics:
 - large-scale data-sets
 - time-critical dependable services
 - development of specialized solutions and infrastructure for big-data analytics
- Capability computing:
 - time-critical applications
 - data-driven extreme computing
 - specialized solutions for big-data driven models
- Shared infrastructure resources
- Competence center: R&D, consulting

OCEAN: concept foundations

- Secure big data operations facilitated: multi-site set-up
- Motivation:
 - rapid growth of experimental and observational data, computer simulation results
 - broad opening of governmental public data
 - challenge of inter-sector collaboration in public sector
 - concertation of High-Performance infrastructures within public sector
- Technology-gap induced challenges:
 - need for novel concepts in algorithmics and computational models construction

OCEAN: initial physical infrastructure

- Distributed location:
 - Current site future backup facility
 - New site:
 - Under construction
 - Operations: Q3, 2015
 - Total floor: 5000+ sq.m
 - Power supply: 4MW (10MW provided)
 - Set-up:
 - Data storage services: initial 30+ PB fast storage
 - HPData Analytics: 850+ GTeps
 - Capability computing: 2+ PF
 - Technology development site

OCEAN: specific features

- Full processing chain encompassed in knowledge retrieval from big data:
 - Data acquisition, from experiment and observation results through HPC simulations
 - Preprocessing and structuring of big data: selection, reduction, visual data analysis and computing
 - Post-processing: data-driven HPC, feedback loop to real systems
- New generation of algorithms, computational models and highly scalable software implementations

OCEAN: selected priorities

Methodology:

- Mathematical fundations of data science and computational
- Statistical methods
- Visual data analysis and scientific visualization
- Computational software: new drections , optimization
- Complex-structure systems: characterization and dynamics

Application areas:

- Numerical weather prediction and its applications to critical decision planning and supporting systems
- Complex systems in natural environment
- Medicine, healthcare and life sciences
- Materials sciences and engineering
- e-governance and industry
- Complex logistics and transportation networks (aviation)
- Social processes associated with introduction of new technologies and digital societal transformation

ICM: some milestones

ICM

Founded in 1993, as a center for:

- HPC research infrastructure: operations and development programs on national scale
- national information infrastructure
- research in computational and information sciences
- Initiated programs and activities, e.g.:
 - national academic applications software system (1996)
 - national research database accessibility (1997)
 - national w3caching program (1996)
 - open-access multi-scale numerical weather prediction system (1997)
 - national virtual library of science (1998)
 - a group of leading-edge experimental labs (2005), extended into a university centre for new technology (2012)

Large-scale research infrastructures and their development: some of ICM contributions

- National networked HPC infrastructure: applications software, capability computing
- National virtual library of science: content, software system
- Unified national academic information infrastructure: integrated system
- Polish Research Bibliography and Polish Citation Index
- EU: DRIVER and OpenAIRE open repository infrastructures
- EU: EuDML (European Digital Mathematics Library)
- EU: UNICORE grid infrastructure (security functionalities)

ICM: selected HPC-driven research areas

• Human physiology:

- Towards personalised medicine:
 - cardiac system, blood circulation
 - cancerogeneous developments
- Multiscale developments:
 - Molecular level
 - Cell and tissue scale
 - Functional effects at macro-scale

• Materials science and engineering:

- Design of new functional materials and biomaterials down to nanoscale:
 - characterization
 - process modelling

ICM: HPC-driven research areas, cont.

Methodology:

- New concepts of computational algorithms and data structures for future architectures (towards exascale)
- Nonlinear process dynamics in systems of high complexity
 - spatial structure formation in systems over complex, possibly variable geometry/topology
 - applications to population dynamics
 - irreversible and nonlocal phenomena
 - decision making and control over multiple time-scales
 - stochastic dynamical networks

ICM: main computational infrastructure

- As of August, 2014:
 - x86-based compu-clusters: ~20K cores
 - Blue Gene Q: 16K cores
 - Power 775: 2.4K cores
 - Blue Gene P: 4K cores (R&D & education)
- 2014 (pending):
 - Capacity compu-server: .3 PF
- 2015 (pending):
 - HighPerformance data analytics system
 - Capability computing system
 - HighPerformance data storage

ICM: an evolution of the concept

- Center for computational sciences (1993+):
 - Mathematical modelling
 - Foundations: physics, chemistry, biology, ...
 - Algorithms
- Promotion and implementation of open publishing models (2004+) – Poland and Europe:
 - software
 - Publishing and scholarly communication
 - Research data
 - e-infrastructures
- Data Science and data-driven sciences centre (2013+):
 - R&D
 - partnerships

ICM: research, solutions and services

Visual Computing and Data Analysis

New solutions: VisNow Visual Analysis Software

- Distributed Visualization Engine (MPP,SMP, GPGPU)
- In situ Visualization
- Visualization of simulation results
 - Cosmology
 - Turbulent flows
 - Neurobiology
 - Biomedicine
- <u>http://visnow.icm.edu.pl</u> (Open Source license)

HPC visualization software

• VisNow http://visnow.icm.edu.pl

- Generic visualization and visual analysis platform VISNOV
- Developed in Java at ICM
- Features
 - Modular
 - Data flow driven
 - Pluggable
- Philosophy
 - Read-And-Watch instant visualization
 - Multifunctional modules
 - Module-object-interface connection
 - Reasonable default values
- New developments:
 - Large datasets support
 - Distributed resources
 - Batch processing

ICM: software and services VISNOW

VisNow for molecular design

MolDyAna

- Interactive tool for **molecular dynamics** data analysis and visualization
- Dynamics animations
- Geometry measurements
- Density charts
- Trajectory analysis
- Spectral analysis

http://moldyana.icm.edu.pl

Numerical weather forecasting and dependent services

- Multi-model multi-grid processing, mesoscale
- Top horizontal resolution in development 1km
- Vertical resolution: 70+ layers
- Services:
 - Severe weather warning systems
 - Energy sector
 - Transportation and logistics
 - Agriculture
 - Space program
- R&D solutions:
 - Energy smart grids
 - Precise agriculture
 - Airspace management

Personalized medicine and healthcare

- Cardiac interventions:
 - Non-invasive diagnostics
 - Cardio-intervention design
 - Remote monitoring and diagnostics
- Cellular and molecular scale computational modeling:
 - Disease profiling
 - Personalized drug design
- Healthcare:
 - Remote monitoring
 - Remote diagnostics
 - Epidemiology (structured populations over networks)

Sicm

Infectious disease spread over Poland: computational Agent Based Model and its predictions

• Model predicts space-distributed epidemic outbreak:

• and location of the epidemic peak in time, dependent on different socio-biological circumstances:

Marek Niezgódka

marekn@icm.edu.pl

ICM: some more R&D references

Case study: biological cellular processes at tissue scale

- Main objective: set up a methodology and powerful computational algorithms to enable large scale modelling of cellular biosystems
- Multiscale approach: simulation of cellular biosystems dynamics, individual cell processes and environment
- Hybrid computational model: solving off-lattice many body system, PDE's describing cellular environment and their interactions
- Challenge: enabling simulations on clinically detectable scales (10⁹ cells = 1cm³ tissue)

Ref.: Large Scale Parallel Simulations of 3-D Cell Colony Dynamics, M.Cytowski, Z.Szymańska, IEEE Computing in Science & Engineering, 2014

POWIEW program

Coalition: ICM, Cyfronet, PSNC http://wielkiewyzwania.pl

Large scale scientific computing projects:

- Numerical Weather Prediction
- Semiconductor modelling
- Modelling and Visualization of RNA Structures
- Neuroinformatics Simulations
- Modelling of the Structure of the Universe
- Molecular Modelling
- Reservoir Modelling
- Astrophysics and Radio Astronomy
- Visual Analysis

Main computing architectures:

- MPP systems IBM BlueGene/P & follow-up
- Fat Node systems <u>IBM POWER7 IH</u>
- SMP systems HP Blade Center Versatile SMP (vSMP)
- GPU-based hybrid systems HP SL390s nVidia Fermi

Case study: Copernicus Complexio

- Zoom-in type simulation:
 - Ultra high-resolution: over 13 bilion particles in the middle of computational domain (green)
 - Medium resolution: transition zone (blue)
 - Lowest resolution: sufficiently large segment of the Universe (red)
- Technical details: 70 Tflop/s & 10 TB computational partition, approx. 4 weeks wall clock time
- Analysis: results of the CoCo simulation are being analysed by international cosmological consortium
- Visualization available on Vimeo: http://vimeo.com/76812335

Modelling of the Structure of the Universe

- Large scale simulations with N-body codes (Gadget3, GotPM)
- Warsaw Universe Simulation, 2048^3 particles
- MPP-based results analysis:
 - Statistical methods
 - Topological classification
 - Geometrical classification
 - Delaunay Tesselation, Alpha-shapes and Betti numbers

Case study: Numerical Weather Forecasting

• Operational numerical weather forecasting for Central Europe

http://meteo.pl

- Unified Model 60h forecasting, current resolution approx. 4km, planned resolution approx. 1km
- IBM Power 775 5x speedup over x86 cluster
- Technical details:
 - 4 runs per day
 - 24 nodes, 768 Power7 cores
 - approx. 20' walltime per run

Modeling flows through porous media

Computational challenges:

- Flows at pore scale for large range of velocities
- Upscaling to core scale: effective parametres and model fitting
- Inertia effects at pore scale ⇒ non-Darcy models at core scale
- Modeling processes resulting in pore clogging and their impact on core scale parameters
- Computations based on realistic geometries obtained from microimaging (X-ray computed microtomography)

Porous media: a virtual laboratory set-up

- Pore-scale geometries
 - Synthetic: periodic, regular patterns, random
 - Realistic data: micro imaging
- Grids at pore-scale
 - 2D and 3D models
 - Triangular and quadrilateral (voxel-based) unstructured grids
- Computations at pore-scale
 - Direct Numerical Simulations by Finite Volumes
- Upscaling and model fitting

Upscaling from pore to core scale

slow flow

faster flow

fast flow

SUMMARY in terms of upscaled values

- •Darcy's regime: constant ratio of P (upscaled pressure) and V (upscaled velocity)
- •Inertia effects non-Darcy models
- Accounting for anisotropy

M. Peszyńska, A. Trykozko: Pore-to-core simulations of flow with large velocities using contractional Modeling data, Computational Geosciences, Vol. 17, nr 4, (2013), 623-645 www.icm.edu.pl

UNIVERSITY OF WARSAW

Impact of pore space clogging on core parameters

 Changes in pore geometries as causes of: biofilm growth, sedimentation, reactive flows, antrophogenic actitivite, ...

•Significant changes in permeability due to clogging

•Figures: random model of clogging (irregular pore lining)

A. Trykozko, M. Peszyńska: Pore-scale simulations of pore clogging and upscaling with loard computational Modeling International Series, Mathematical Sciences and Applications, Vol. 36 (2013), 277-300 www.icm.edu.pl

UNIVERSITY OF WARSAW

Challenges in 3D pore-scale simulations: SIZE!!!

- Complexity 130M cells, 10Gb files, challenging visualization and post-processing
- Grid reduction (data coarsening) necessary
- Sampling vs. Reference Elementary Volume size
- Mesh refinement

1[DWildenschild], 414x414x300, largest problem: 30Mcells, 9Gb, voxel 34μ.
2[DWildenschild], 431x436x380, 23Mcells, too small to be *REV*3[BLingquist], 731x731x600, largest problem 8Gb, 27Mcells, voxel=16 μ.

Case study: Activity of the sensory system and extracellular field potential

Main objectives:

- Simulations of activity of the sensory and visual neuronal systems
- **Simulation of response** to physiological stimulation and electrical stimulation
- Computational toolchain: from computer-aided construction of neuronal systems to large scale simulations and efficient analysis

The resulting tool and models allow for the validation of methods for analysis of **experimental data** and the verification of hypotheses posed in the experimental work, which may be difficult to verify in another way.

Example research field: Analysis of dynamics of thalamic activation in stimulations of somato-sensory pathway in anesthetized rat and activity in the barrel cortex in behaving rats

High-throughput modelling of functionally and therapeutically relevant spatial RNA structures

- Modelling of spatial RNA structures
- Design of new therapeutic targets aimed at the RNA
- Validation of ICM's RNAComposer software for fully automated spatial RNA models generation from structural fragments

Modeling of growth and structure transformations in heterogeneous systems

Mathematics within multiscale modeling framework

Nonlinear dynamics of spatial developments:

- Phase transformations
- Chemical reactions/ process thermodynamics
- Rheology / memory / nonlocal interaction mechanisms
- Structured populations
- Coupled multiscale systems
- Geometric / topological evolution
- Uncertainty components / sensitivity aspects

Specific applied modeling problems

Phase separation and related phenomena:

- nonlinear variational problems
- process dynamics
- structure formation

Phase transformations, crystal growth, physiology:

- biomedical processes: blood circulation, tumor growth
- process design & control

Population dynamics:

- structured populations
- operational (stochastic) networks

Applications in biomedical process modelling and physiology

Visual neurocomputing:

2.3µv

3.3uv

3D modeling based on of multimodal data for therapy/surgery planning: *effective vs. real medium computational model*

Thrombosis: an outline of temporal sequencing and effects

Process dynamics in blood circulation

- variable geometry
- free boundaries
- complex flow nature
- chemical reactivity
- multiscale
- granularity
- role of mechanics
- rheological features
- thermal sensitivity (→HSPs)

Interscale model consistency: validation

- Cell populations dynamics
- Degenerate tissue growth
- Cell populations dynamics, pathological cell populations growth spreading mechanisms
 - Human agents and their behaviour: transport-related reference patterns
 - Process dynamics in large-scale networked environments: local and global passenger-centric model
 - Information transfer trees: hybrid and continuous models in information spaces

