
Building Scalable Technologies

for Semantic Analysis

JOHN FEO

HIGH PERFORMANCE DATA ANALYTICS PROJECT

PACIFIC NORTHWEST NATIONAL LABORATORY

The problem

2

• Data is no longer “owner produced,” but rather gathered from

external sources on the web. It is unstructured and heterogeneous.

• The fixed schemas and table formats of relational databases are too

rigid for web-gathered data.

• NoSQL databases have emerged, but their chosen approach of

distributing data over many systems makes finding complex

connections prohibitive.

0

500

1000

1500

2000

2500

3000

2008 2010 2012 2014 2016 2018 2020

Si
ze

 (
P

B
)

Year

Unstructured

Structured

GEMS - A DATABASE ALIGNED WITH FUTURE DATA TRENDS THAT EXTENDS

THE CAPABILITIES OF EXISTING SOLUTIONS

3

• Flexible data model that supports structured and unstructured data in a

single form

• In-memory datastore using local, remote, and flash memories

• General parallel programming model – not record or vertex centric

• Runs on commodity platforms from desktops to clouds – no special

system requirements

0

500

1000

1500

2000

2500

3000

2008 2010 2012 2014 2016 2018 2020

Si
ze

 (
P

B
)

Year

Unstructured

Structured

Why do we perform better than others

NO

NO

YES

Bu

s

Hayashi Zaire

Train Anthr

ax

Mone

y Endo

4

• We store unstructured data as a graph

• We process graph data using graph methods

• We support a general parallel programming

model allowing methods to be written naturally

• We have developed a multithreaded runtime

system that scales out on commodity hardware

• We use standard languages (SPARQL, C++)

• We require no special systems (x86, Linux, MPI)

ADVANTAGES

LARGER DATA SIZE

GREATER

PRODUCTIVITY

FASTER TIME TO

SOLUTION

LOWER COST OF

OWNERSHIP

Mary called her sister Sally to discuss

buying her 6-year daughter a pony for

Christmas.

1) Mary called Sally

2) Mary has a sister named Sally

3) Sally has a sister named Mary

4) Either Mary or Sally has a daughter

5) The daughter is 6 years old

6) Mary wants to buy a pony

Sally rented Joe’s condo in Hawaii for a

two week vacation. She paid $1200 rent.

1) Sally traveled to Hawaii

2) Sally vacationed in Hawaii

3) Joe owns a condo

4) Joe’s condo is in Hawaii

5) Sally rented Joe’s condo

6) Joe rented his condo for $600 per week

NAME SIBLING CHILD AGE CALLED FUTURE

PURCHASES

Mary Sally ? Sally Pony

Sally Mary ?

? 6

?

Mary
?

6

pony Sally

ca
lle

d

Joe

Hawaii

condo

$600

Use graphs rather than tables

5

RETURN ALL PERSONS WHO HAVE SHARED 2 OR MORE ADDRESSES WITH JOHN

NAME ADDR

NAME ADDR

ADDR

Join on

ADDR

NAME ADDR

Self

Join on

ADDR

NAME ADDR ADDR

John

Fred 100 Main

lived_at

212 Pine
lived_at

Mary

lived_at

lived_at
243 Spruce

“Everything you do at scale must be

parallelized or it will run forever”

- Michael Stonebraker

Use graph algorithms rather than table joins

6

Use memory rather than disks

7

Graph algorithms cannot take advantage of conventional storage

hierarchies or locality-preserving, distributed data structures

So keep everything in memory for fast random access

… but memory is very limited

So use a cluster to expand available memory by adding nodes

… but distributed data incurs long latencies

So use multithreading to tolerate latencies

Use multithreading to hide latencies

Generate hundreds of threads per core

Rather than execute one thread at-a-time per core (conventional runtime),

switch among active threads (multithreading runtime) such that …

Gaps introduced by long latency operations in one thread are

filled by instructions in other threads

8

Clip by OCAL, Clker.com

512 GB

32 cores

$8,000

1 TB

$10,000

2 TB

80 cores

$85,000

100+ TB

1024+ cores

$500,000

M
 E

 M
 O

 R
 Y

 S

 I
 Z

 E

N U M B E R O F P R O C E S S O R S

GEMS can scale up and scale out

9

GEMS software stack

10

Manages communication, distributed data, parallel tasks

Makes parallel systems easy to use efficiently

Algorithms and data structures that are locality-(in)sensitive

Semantic Graph Library (SGLIB)

¢ommodity cluster $pecial-purpose hardware

Hand-coded C++
SPARQL to C++ Compiler

Multi-threaded Runtime System (GMT)

SPARQL

G
E

M
S

 S
ta

c
k

Query interface with automatic optimization

Berlin Benchmark – GEMS vs Urika

11

1B triples, 4TB memory systems

Same main memory size, but GEMS system had half the processors

30

25

20

15

10

5

0

Q1 Q2 Q3 Q4 Q5 Q6

T
im

e
 (

s
e

c
)

GEMS URIKA

Berlin Benchmark – GEMS vs. Neo4j

12

Ran a data size that fit main memory to minimize Neo4j disk transfers

Rebooted Neo4j to use best mode for each query

Hired experienced Neo4j user to conduct test

GEMS vs. GraphLab and GraphX

13

Choose an algorithm studied heavily for both graph libraries

Worked closely with library development groups to insure best performance

GEMS is 4x faster than GraphLab and 16x faster than GraphX

Setup times – 1B triples

14

FROM TRIPLES FILE
BUILD DICTIONARY, BUILD GRAPH, SAVE GZIP FILE

16 P 1007 sec

32 P 555 sec

64 P 384 sec

FROM GZIP FILE
RESTORE TRIPLES, RESTORE DICTIONARY, BUILD GRAPH

16 P 906 sec

32 P 432 sec

64 P 238 sec

Property paths

15

SELECT ?resource ?location WHERE {

 ?resource rdfs:a/rdfs:subClassOf* rdesc:DataResource .

 ?resource wgs84:location/(gn:locatedIn|gn:parentFeature)* ?location .

}

A path (+, *) is just a recursive call

 int DR_Node = dictionary.lookup(“:DataResources”);
 forEach(ANY, “:subClassOf”, DR_Node, Loop1);
 forEach(ANY, “:type”, DR_Node, Loop2);
……
……

// ?dataResource :subClassOf :DataResource
static void Loop1(subject, predicate, object) {
 forEach(ANY, “:subClassOf”, subject, Loop1);
 forEach(ANY, “:type”, subject, Loop2);
}

// ?resource :type :DataResource
static void Loop2(subject, predicate, object) {
 args_t args;
 args.resource = subject;
 forEach(subject, “:location”, ANY, Loop3, args);
}

:DataResource resource

:subClassOf

XYZ

:type

:location

ABC EFG
:locatedIn *

:parentFeature *

:type

UVW

:subClassOf

resource
:location

Attributed edges

16

In many problem domains, relationships have many attributes

Node ID: complex structure, two octets, A.B:P

Node label: internal/external

Edge ID: unique number

Edge label: application protocol

Edge attributes: # packets, # bytes, time interval, …

Flow1

ipsrc

ipdst

portsrc

Portdst

Bytes

Packets

Time-
stamp

protocol

Creating “star patterns” wastes space and

complicates query processing

Thick edges

Recognize the distinction between relationships and attributes

Store relationships as a graph

Store attributes in a table

17

Special predicates (UIDs) indicate record #

Can enrich with traditional RDF edges

a.y b.x a.x sends_to sends_to

sends_to

Left IP
Left
Port

Left
Label

Edge
Id

Protocal Size Stime Ftime
Right

IP
Right
Port

Right
Label

a.x 1 I 1 FTP 33 2 5 b.x 3 I

a.y 1 E 2 HTTP 25 4 4 b.x 3 I

Conclusions

We are developing a scalable, in-memory triplestore capable of

knowledge discovery on web-scale data warehouse

Scales with data size

Multiple programming entry points

Conventional cluster and cloud systems

We are working with government agencies and early adopters on real

world problems

We seek partners in transitioning our platform from prototype to

production

18

