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The problem 
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• Data is no longer “owner produced,” but rather gathered from 

external sources on the web.  It is unstructured and heterogeneous. 

• The fixed schemas and table formats of relational databases are too 

rigid for web-gathered data. 

• NoSQL databases have emerged, but their chosen approach of 

distributing data over many systems makes finding complex 

connections prohibitive. 
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GEMS - A DATABASE ALIGNED WITH FUTURE DATA TRENDS THAT EXTENDS 

THE CAPABILITIES OF EXISTING SOLUTIONS  
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• Flexible data model that supports structured and unstructured data in a 

single form 

• In-memory datastore using local, remote, and flash memories 

• General parallel programming model – not record or vertex centric 

• Runs on commodity platforms from desktops to clouds – no special 

system requirements 
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Why do we perform better than others 
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• We store unstructured data as a graph 

• We process graph data using graph methods 

• We support a general parallel programming 

model allowing methods to be written naturally 

• We have developed a multithreaded runtime 

system that scales out on commodity hardware 

• We use standard languages (SPARQL, C++) 

• We require no special systems (x86, Linux, MPI) 

ADVANTAGES 

LARGER DATA SIZE 

GREATER 

PRODUCTIVITY 

FASTER TIME TO 

SOLUTION 

LOWER COST OF 

OWNERSHIP 



Mary called her sister Sally to discuss 

buying her 6-year daughter a pony for 

Christmas. 

1) Mary called Sally 

2) Mary has a sister named Sally 

3) Sally has a sister named Mary 

4) Either Mary or Sally has a daughter 

5) The daughter is 6 years old 

6) Mary wants to buy a pony 

Sally rented Joe’s condo in Hawaii for a 

two week vacation.  She paid $1200 rent. 

1) Sally traveled to Hawaii 

2) Sally vacationed in Hawaii 

3) Joe owns a condo 

4) Joe’s condo is in Hawaii 

5) Sally rented Joe’s condo 

6) Joe rented his condo for $600 per week 
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Use graphs rather than tables 
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RETURN ALL PERSONS WHO HAVE SHARED 2 OR MORE ADDRESSES WITH JOHN 

NAME    ADDR 

NAME    ADDR 

ADDR 

Join on 

ADDR 

NAME    ADDR 

Self 

Join on 

ADDR 

NAME    ADDR  ADDR 

John 

Fred 100 Main 

lived_at 

212 Pine 
lived_at 

Mary 

lived_at 

lived_at 
243 Spruce 

“Everything you do at scale must be 

parallelized or it will run forever” 

- Michael Stonebraker 

Use graph algorithms rather than table joins 

6 



Use memory rather than disks 
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Graph algorithms cannot take advantage of conventional storage 

hierarchies or locality-preserving, distributed data structures 

So keep everything in memory for fast random access 

… but memory is very limited 

So use a cluster to expand available memory by adding nodes 

… but distributed data incurs long latencies 

So use multithreading to tolerate latencies 



Use multithreading to hide latencies 

Generate hundreds of threads per core 

Rather than execute one thread at-a-time per core (conventional runtime), 

switch among active threads (multithreading runtime) such that … 

Gaps introduced by long latency operations in one thread are 

filled by instructions in other threads 
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Clip by OCAL, Clker.com 

512 GB 

32 cores 

$8,000 

1 TB 

$10,000 

2 TB 

80 cores 

$85,000 

100+ TB 

1024+ cores 

$500,000 
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GEMS can scale up and scale out 
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GEMS software stack 
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Manages communication, distributed data, parallel tasks 

Makes parallel systems easy to use efficiently 

Algorithms and data structures that are locality-(in)sensitive 

Semantic Graph Library (SGLIB) 

¢ommodity cluster $pecial-purpose hardware 

Hand-coded C++ 
SPARQL to C++ Compiler 

Multi-threaded Runtime System (GMT) 

SPARQL 
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Query interface with automatic optimization 



Berlin Benchmark – GEMS vs Urika 
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1B triples, 4TB memory systems 

Same main memory size, but GEMS system had half the processors 
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Berlin Benchmark – GEMS vs. Neo4j 
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Ran a data size that fit main memory to minimize Neo4j disk transfers 

Rebooted Neo4j to use best mode for each query 

Hired experienced Neo4j user to conduct test 



GEMS vs. GraphLab and GraphX 
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Choose an algorithm studied heavily for both graph libraries 

Worked closely with library development groups to insure best performance 

GEMS is 4x faster than GraphLab and 16x faster than GraphX 



Setup times – 1B triples 
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FROM TRIPLES FILE 
BUILD DICTIONARY, BUILD GRAPH, SAVE GZIP FILE 

16 P 1007 sec 

32 P 555 sec 

64 P 384 sec 

FROM GZIP FILE 
RESTORE TRIPLES, RESTORE DICTIONARY, BUILD GRAPH 

16 P 906 sec 

32 P 432 sec 

64 P 238 sec 



Property paths 

15 

SELECT ?resource ?location WHERE { 

  ?resource rdfs:a/rdfs:subClassOf* rdesc:DataResource . 

  ?resource wgs84:location/(gn:locatedIn|gn:parentFeature)* ?location .   

} 

A path (+, *) is just a recursive call 

  int DR_Node = dictionary.lookup(“:DataResources”); 
  forEach(ANY, “:subClassOf”, DR_Node, Loop1); 
  forEach(ANY, “:type”, DR_Node, Loop2); 
…… 
…… 
 
// ?dataResource :subClassOf :DataResource 
static void Loop1(subject, predicate, object) { 
  forEach(ANY, “:subClassOf”, subject, Loop1);  
  forEach(ANY, “:type”, subject, Loop2); 
} 
 
// ?resource :type :DataResource 
static void Loop2(subject, predicate, object) { 
  args_t args; 
  args.resource = subject; 
  forEach(subject, “:location”, ANY, Loop3, args); 
} 

:DataResource resource 

:subClassOf 

XYZ 

:type 

:location 

ABC EFG 
:locatedIn * 

:parentFeature * 

:type 

UVW 

:subClassOf 

resource 
:location 



Attributed edges 
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In many problem domains, relationships have many attributes 

 

 

Node ID: complex structure, two octets, A.B:P 

Node label: internal/external 

Edge ID: unique number 

Edge label: application protocol 

Edge attributes: # packets, # bytes, time interval, … 

Flow1 

ipsrc 

ipdst 

portsrc 

Portdst 

Bytes 

Packets 

Time-
stamp 

protocol 

Creating “star patterns” wastes space and 

complicates query processing 



Thick edges 

Recognize the distinction between relationships and attributes 

Store relationships as a graph 

Store attributes in a table 
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Special predicates (UIDs) indicate record # 

Can enrich with traditional RDF edges 

a.y b.x a.x sends_to sends_to 

sends_to 

Left IP 
Left 
Port 

Left 
Label 

Edge 
Id 

Protocal Size Stime Ftime 
Right 

IP 
Right 
Port 

Right 
Label 

a.x 1 I 1 FTP 33 2 5 b.x 3 I 

a.y 1 E 2 HTTP 25 4 4 b.x 3 I 



Conclusions 

We are developing a scalable, in-memory triplestore capable of 

knowledge discovery on web-scale data warehouse 

Scales with data size 

Multiple programming entry points 

Conventional cluster and cloud systems 

We are working with government agencies and early adopters on real 

world problems 

We seek partners in transitioning our platform from prototype to 

production 
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