
BerkeleyGW:
Evolution of a

Materials Science
Code

Jack Deslippe (NERSC)
HPC Forum

Who am I?

Jack Deslippe

- Ph.D. In Physics from Berkeley in 2012

- NERSC User Services Group (Materials Science / Chemistry Consultant)

- Developer in BerkeleyGW project

- NESAP (NERSC’s exascale readiness program)

- NERSC liaison/developer for NERSC - DOE Light-source big data integration
efforts

- Developer of MyNERSC real-time web portal

Other Developers

Steven G. Louie
UC Berkeley, LBNL

Chao Yang
LBNL

David Strubbe
MIT

Felipe Jornada
UC Berkeley

Lin Lin
LBNL

Andrew Canning
LBNL

Georgy Samsonidze
BOSCH

Fang Liu
LBNL

Derek Vigil
UC Berkeley

Jamal Mustafa
UC Berkeley

Jeff Neaton
LBNL

Johannes Lischner
LBNL

Brad Barker
UC Berkeley

Sahar Sharifzadeh
LBNL

Meiyue Shao

What is GW

Materials:
InSb, InAs
Ge
GaSb
Si
InP
GaAs
CdS
AlSb, AlAs
CdSe, CdTe
BP
SiC
C60
GaP
AlP
ZnTe, ZnSe
c-GaN, w-GaN
InS
w-BN, c-BN
diamond
w-AlN
LiCl
Fluorite
LiF

Why We Need GW

Many-body effects extremely important in
Excited-State properties of Complex
Materials.

Accurately describes properties important
for:

- Photovoltaics
- LEDs
- Junctions / Interfaces
- Defect Energy Levels
- ….

BerkeleyGW in the Rush
to Publish Era

- Originates in 1980’s

- Over next 20 years, develops organically
- ~20 developers
- 10’s of different versions (each with different features/issues/bugs)

- Some versions had “basic” parallelization with MPI
- Communication done with Disk-IO
- Significant Serial Bottlenecks
- Hardwall’s on system size due to non-distributed arrays

The State of The Code in 2006

GW Reputation (Motivation Behind BerkeleyGW)

The Bad:

The Good:

Quantitatively accurate for quasiparticle properties in a wide
variety of systems.

Accurately describes dielectric screening important in excited
state properties.

Prohibitively slow for large systems. Usually thought to cost
orders of magnitude more time that DFT.

Memory intensive and scales badly. Exhausted by storage of the
dielectric matrix and wavefunctions. Limited ~50 atoms.

GW Reputation (Motivation Behind BerkeleyGW)

The Bad:

The Good:

Quantitatively accurate for quasiparticle properties in a wide
variety of systems.

Accurately describes dielectric screening important in excited
state properties.

Prohibitively slow for large systems. Usually thought to cost
orders of magnitude more time that DFT.

Memory intensive and scales badly. Exhausted by storage of the
dielectric matrix and wavefunctions. Limited ~50 atoms.

X

BerkeleyGW in the MPP
Era

Software Carpentry Steps for Rewrite

1. Pick a logo

2. Use version control (SVN) Create testsuite / buildbot

3. Profile (with tools, IPM/craypat/hpctoolkit), utilize timers
throughout, wrap allocate statements etc…

4. Parallelize, distribute memory etc...

Computational Bottlenecks in MPP Rewrite

1. Compute via nxn' FFTs (N3 Step. Big Prefactor.):

2. Compute sum via large ZGEMM (N4 Step. Small
Prefactor. All to All Communication Done):

Where,

3. Matrix Inversion. ScaLAPACK

Computational Bottlenecks

(Sigma GPP Option)

4. Manual loop reductions to compute sum for self-energy.
N3 x <number of bands of interest>

MPI Scaling of Epsilon Code:

BerkeleyGW in the Many-
Core Era

The NERSC-8 System: Cori

Application Readiness

NERSC Top Codes

20 NESAP Codes

Babbage

- NERSC’s Xeon-Phi (KNC) testbed. 50 Nodes, each with two KNC and two
Sandybridge.
- Used to investigate code performance in “Native Mode”. On card performance.

Failure of the MPI-Only Programming Model in BerkeleyGW

★ Big systems require more memory. Cost scales as Natm^2 to store the data.

★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and
each MPI task has a memory overhead.

★ On Edison, users sometimes forced to use 1 of 24 available cores, in order to provide MPI
tasks with enough memory. 90% of the computing capability is lost.

…

Steps to Optimize BerkeleyGW on Babbage

Time/Code-Revision

*

Low
er is B

etter

1. Refactor to create hierarchical set of loops to be parallelized via MPI, OpenMP and
Vectorization and to improve memory locality.

2. Add OpenMP at as high a level as possible.
3. Make sure large innermost, flop intensive, loops are vectorized

 * - eliminate spurious logic, some code restructuring simplification and other optimization

Running on Many-Core Xeon-Phi Requires OpenMP Simply
To Fit Problem in Memory

★

★

Low
er is B

etter

!$OMP DO reduction(+:achtemp)
 do my_igp = 1, ngpown

 ...

 do iw=1,3

 scht=0D0
 wxt = wx_array(iw)

 do ig = 1, ncouls

 !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

 wdiff = wxt - wtilde_array(ig,my_igp)
 delw = wtilde_array(ig,my_igp) / wdiff

 ...

 scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)

 scht = scht + scha(ig)

 enddo ! loop over g

 sch_array(iw) = sch_array(iw) + 0.5D0*scht

 enddo

 achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

 enddo

Simplified Final Loop Structure

ngpown typically in
100’s to 1000s. Good
for many threads.

ncouls typically in
1000s - 10,000s.
Good for vectorization.
Don’t have to worry
much about memory.
alignment.

Original inner loop.
Too small to vectorize!

Attempt to save work
breaks vectorization
and makes code
slower.

Hybrid MPI-OpenMP Scaling Improvements.

Epsilon Code

* Major Improvement between 1.0 and 1.1

* Trading MPI tasks for OpenMP threads, yields
improved performance (mostly in MPI
communication costs) and allows scaling to higher
core counts.

Sigma Code

Epsilon/Sigma Improvements

- Performance improvements from:
Parallel IO (HDF5)
Vectorization
Memory-locality improvements
Implementation

Summary

My Wishlist

● Robust code changes. I don’t want to add things in only to take them out
again two years later.

● Performance portability. Changes made today for one platform should
help on all. To the extent possible, don’t want multiple branches for each
architecture.

