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What is GW

Materials:
InSb, InAs
Ge 
GaSb
Si
InP
GaAs
CdS
AlSb, AlAs
CdSe, CdTe
BP
SiC
C60
GaP
AlP
ZnTe, ZnSe
c-GaN, w-GaN
InS
w-BN, c-BN
diamond
w-AlN
LiCl
Fluorite
LiF



Why We Need GW

Many-body effects extremely important in 
Excited-State properties of Complex 
Materials.  

Accurately describes properties important 
for:

- Photovoltaics
- LEDs
- Junctions / Interfaces
- Defect Energy Levels
- ….

 
            



BerkeleyGW in the Rush 
to Publish Era



- Originates in 1980’s

- Over next 20 years, develops organically
- ~20 developers
- 10’s of different versions (each with different features/issues/bugs)

- Some versions had “basic” parallelization with MPI
- Communication done with Disk-IO
- Significant Serial Bottlenecks
- Hardwall’s on system size due to non-distributed arrays

The State of The Code in 2006



GW Reputation (Motivation Behind BerkeleyGW)

The Bad:

The Good:

Quantitatively accurate for quasiparticle properties in a wide 
variety of systems.

Accurately describes dielectric screening important in excited 
state properties.

Prohibitively slow for large systems.  Usually thought to cost 
orders of magnitude more time that DFT.

Memory intensive and scales badly.  Exhausted by storage of the 
dielectric matrix and wavefunctions.  Limited ~50 atoms.



GW Reputation (Motivation Behind BerkeleyGW)

The Bad:

The Good:

Quantitatively accurate for quasiparticle properties in a wide 
variety of systems.

Accurately describes dielectric screening important in excited 
state properties.

Prohibitively slow for large systems.  Usually thought to cost 
orders of magnitude more time that DFT.

Memory intensive and scales badly.  Exhausted by storage of the 
dielectric matrix and wavefunctions.  Limited ~50 atoms.

X



BerkeleyGW in the MPP 
Era



Software Carpentry Steps for Rewrite

1. Pick a logo

2. Use version control (SVN) Create testsuite / buildbot

3. Profile (with tools, IPM/craypat/hpctoolkit), utilize timers 
throughout, wrap allocate statements etc…

4. Parallelize, distribute memory etc...



Computational Bottlenecks in MPP Rewrite

1. Compute via nxn' FFTs (N3 Step. Big Prefactor.): 

2. Compute sum via large ZGEMM (N4 Step. Small 
Prefactor. All to All Communication Done):

Where,

3. Matrix Inversion. ScaLAPACK



Computational Bottlenecks

(Sigma GPP Option)

4. Manual loop reductions to compute sum for self-energy. 
N3 x <number of bands of interest>



MPI Scaling of Epsilon Code:



BerkeleyGW in the Many-
Core Era



The NERSC-8 System: Cori



Application Readiness

NERSC Top Codes



20 NESAP Codes



Babbage

- NERSC’s Xeon-Phi (KNC) testbed. 50 Nodes, each with two KNC and two 
Sandybridge.
- Used to investigate code performance in “Native Mode”.  On card performance.



Failure of the MPI-Only Programming Model in BerkeleyGW 

★ Big systems require more memory. Cost scales as Natm^2 to store the data.

★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and 
each MPI task has a memory overhead.

★ On Edison, users sometimes forced to use 1 of 24 available cores, in order to provide MPI 
tasks with enough memory.  90% of the computing capability is lost.

…



Steps to Optimize BerkeleyGW on Babbage

Time/Code-Revision

*

Low
er is B

etter

1. Refactor to create hierarchical set of loops to be parallelized via MPI, OpenMP and 
Vectorization and to improve memory locality.

2. Add OpenMP at as high a level as possible.
3. Make sure large innermost, flop intensive, loops are vectorized 

  * - eliminate spurious logic, some code restructuring simplification and other optimization



Running on Many-Core Xeon-Phi Requires OpenMP Simply
To Fit Problem in Memory

★

★

Low
er is B

etter



!$OMP DO reduction(+:achtemp)
  do my_igp = 1, ngpown

    ...

    do iw=1,3

      scht=0D0
      wxt = wx_array(iw)

      do ig = 1, ncouls

        !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

        wdiff = wxt - wtilde_array(ig,my_igp)
        delw = wtilde_array(ig,my_igp) / wdiff

        ...

        scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)

        scht = scht + scha(ig)

      enddo ! loop over g

      sch_array(iw) = sch_array(iw) + 0.5D0*scht

    enddo
    
    achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

  enddo

Simplified Final Loop Structure

ngpown typically in 
100’s to 1000s. Good 
for many threads.

ncouls typically in 
1000s - 10,000s. 
Good for vectorization. 
Don’t have to worry 
much about memory. 
alignment.

Original inner loop. 
Too small to vectorize!

Attempt to save work 
breaks vectorization 
and makes code 
slower.



Hybrid MPI-OpenMP Scaling Improvements.

Epsilon Code

* Major Improvement between 1.0 and 1.1

* Trading MPI tasks for OpenMP threads, yields 
improved performance (mostly in MPI 
communication costs) and allows scaling to higher 
core counts.

Sigma Code



Epsilon/Sigma Improvements

- Performance improvements from:
Parallel IO (HDF5)
Vectorization
Memory-locality improvements
Implementation 



Summary

My Wishlist

● Robust code changes. I don’t want to add things in only to take them out 
again two years later.

● Performance portability. Changes made today for one platform should 
help on all. To the extent possible, don’t want multiple branches for each 
architecture.


