Recent Industry Applications of the CREATE Ships NESM Project

Weidlinger Associates®, Inc.

HPC User Forum Santa Fe, NM April 9, 2014

Acknowledgements

- Naval Surface Warfare Center, Carderock Division
- Navy Small Business Innovation Research Program
 - SBIR Topic Number: N03-051
 - Contract Number: N00167-08-D-0026

Overview

- What is NESM?
- Who is Weidlinger Associates, Inc.
- Full-Ship Shock Trial Alternative Program
- How has the HPC made a difference
 - Source modeling non-explosive testing alternatives for the US Navy
 - UQ studies
- Key advantages of the HPC

NESM Navy Enhanced Sierra Mechanics

- Physics-based capabilities to predict ship response to weapons effects
- Coupled media-structure interaction
 - DYSMAS / Gemini fluid dynamics
 - Sierra Suite structural dynamics
 - Standard Coupler Interface (SCI)
- Developed by
 - Naval Surface Warfare Center, Carderock
 - Naval Surface Warfare Center, Indian Head
 - Sandia National Laboratories

Weidlinger Associates, Inc.

- 300+ engineering firm with 65 years experience
- Buildings, bridges, infrastructure, applied science
- Expertise
 - Design, analysis, testing, and qualification support for US navy systems to UNDEX

- Integration of novel technology with M&S experience
 - Airgun technology
- Longstanding relationship with US Navy Agencies
 - NAVSEA, NSWCCD, NSWCIH, ONR

First of Class Shock Trials

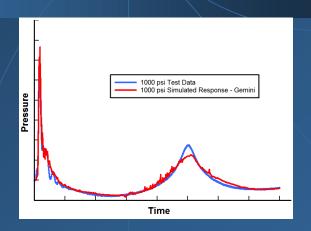
- Ship tested prior to first refit
- Charges deployed in offshore tests
- Testing ties up ship and support facilities
- Live Fire Testing & Evaluation (LFT&E) requirement
- Trial total:Tens of millions \$

FSSTA Program Objective

- Develop an affordable, technically sound process capable of replacing Full Ship Shock Trial at-sea testing that supports:
 - Validation of ship shock hardening and
 - Assessment of ship survivability to expected threats

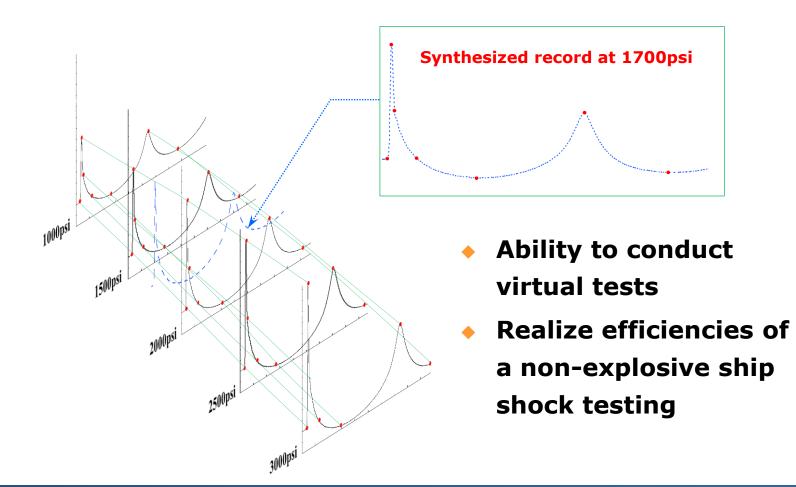
Seismic Airguns

- COTS Technology
 - Non-explosive full-ship shock trial alternative for shock testing
 US Patent # 6,662,624
 - Testing can be conducted rapidly, repeatedly in littoral environment, in any weather conditions


WAI Use of HPC

- Airgun Source Modeling
 - Automated calibration of source loading parameters
 - Stochastic optimization algorithm
- Uncertainty quantification (UQ) studies
 - Coupled fluid-structure interaction simulations
 - Refined-Stratified Sampling Bootstrap Monte Carlo (RSS/BMC) Methodology
 - Polynomial Chaos Expansion (PCE) methodology

Airgun Source Modeling


- Loading parameter calibration
 - Nonlinear inverse problem solving airgun bubble dynamics using pressure gage data

- Propagation of candidate loading in fluid media
 - DYSMAS / Gemini
- Parameter optimization
 - Automated source model parameter optimization
 - Calibration algorithm compiled and executed on HPC
 - Capitalized on HPC compiler features
 - Capitalized on scripting options

Source Model Calibration Motivation

Automated Calibrations on HPC Platforms

- Basic calibration statistics
 - Single source model calibration: 48,000 CPU hours
- Source model library development
 - 10 sets of parameters
 - ~0.5M CPU hours of unattended optimized calibrations

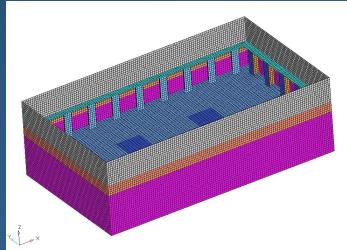
54 CPU years of calibrations
Conducted with Gemini
on HPC platforms: Harold¹, Diamond², Riptide³

- 1. U.S. Army Research Laboratory
- 2. ERDC DoD Supercomputing Research Center
- 3. Maui HPCC

Uncertainty Quantification of Large Scale FE Simulations

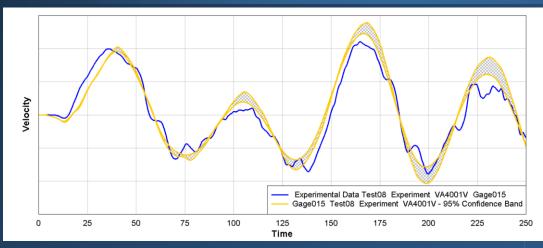
- Full-scale coupled fluid-structure interaction simulations
 - Millions of elements and DOF
- Use of traditional Monte Carlo methods are intractable for quantifying uncertainty
 - Size/scale of coupled FSI response simulations exceed computational resources
- WAI implemented a methodology
 - Refined Stratified Sampling
 - Bootstrap Monte Carlo Simulation

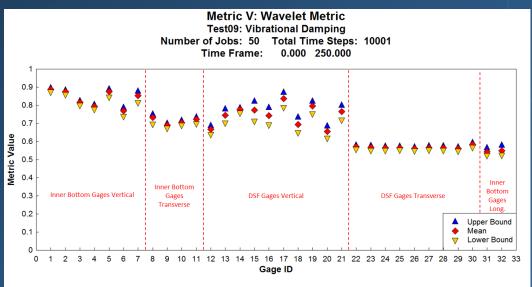
This methodology allows for an optimally small sample size given some desired level of statistical convergence



UQ Studies

- WAI conducted 12 complete UQ studies performed in conjunction with 2012 test series
- Uncertain parameters in the UQ studies based on a pooling of practical Navy UNDEX and Airguns experience


MIL-S-901D Heavyweight Shock Test


Floating Shock Platform (FSP)

Output Sought in UQ Studies

Confidence Bands for Statistics of UQ studies

Correlative Metrics – "Goodness- of – Fit"

UQ Studies

- WAI conducted 12 complete UQ studies
 - 7 Airgun loading scenarios against a FSP
 - 5 Underwater explosion scenarios against a FSP

410 fully-coupled simulations
Conducted with NESM
on HPC Platforms: Harold¹, Diamond²

56 CPU-years of calculation time

- 1. U.S. Army Research Laboratory
- 2. ERDC DoD Supercomputing Research Center

Observations

- HPC resources permit solutions to problems which were intractable a decade ago
- Critical asset for automated parallelized processes

Key Benefits Offered by HPC

- Instrumental in helping WAI to deliver on Phase III SBIR contract
- Will realize savings in future test planning and test support

