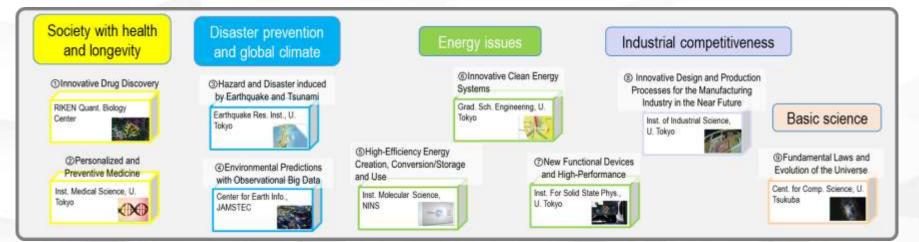
Japan's post K Computer

Yutaka Ishikawa Project Leader RIKEN AICS

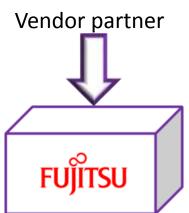
HPC User Forum, 7th September, 2016

Outline of Talk

- Introduction of FLAGSHIP2020 project
- An Overview of post K system
- Concluding Remarks

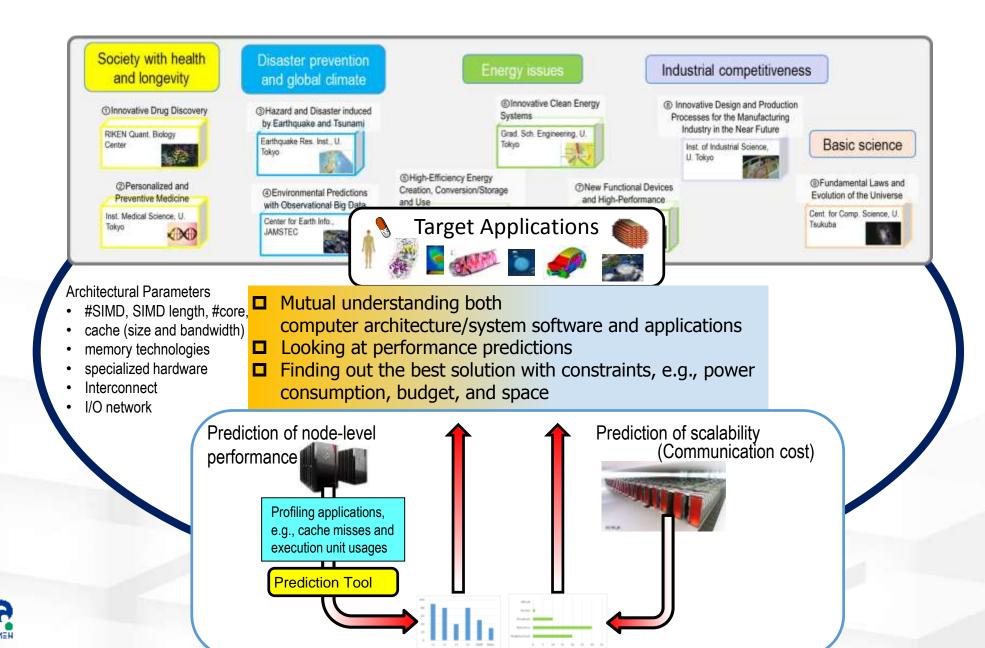

An Overview of Flagship 2020 project

 Developing the next Japanese flagship computer, so-called "post K"

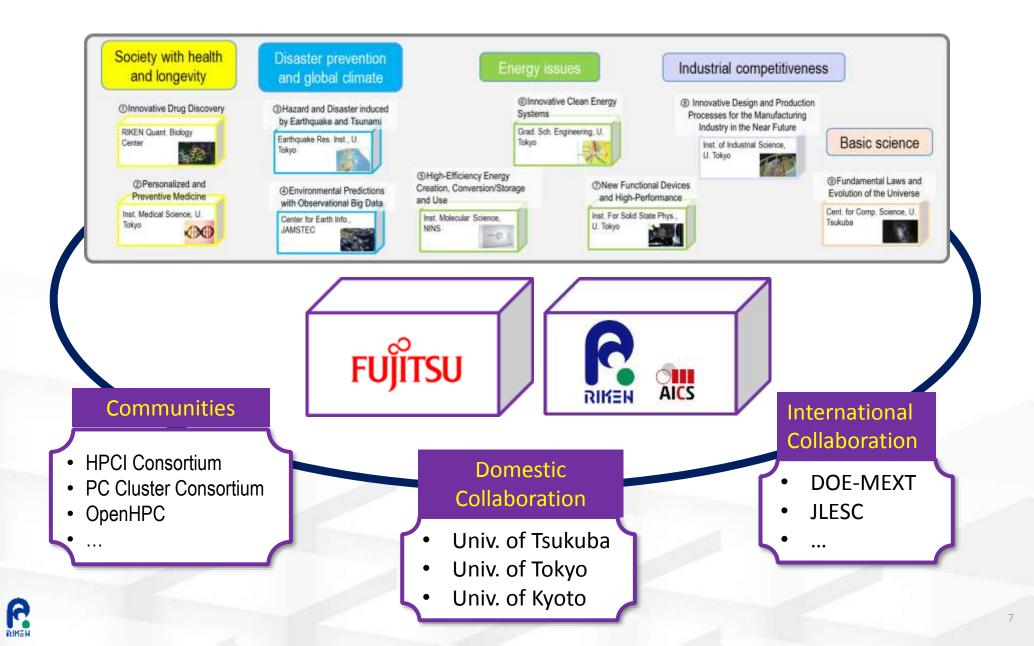

 Developing a wide range of application codes, to run on the "post K", to solve major social and science issues

The Japanese government selected 9 social & scientific priority issues and their R&D organizations.

Co-design


Society with health	Discontor annualize			Target Application
Society with health and longevity	Disaster prevention and global climate	Energy issues	Program	Brief description
 Innovative Drug Discovery RIKEN Quant, Biology Center OPersonalized and Preventive Medicine Inst. Medical Science, U, Tokyo 	OEnvironmental Predictions Cre with Observational Big Data Center for Earth Info.	() High-Efficiency Energy Creation, Conversion/Storage and Use Inst. Molecular Science, NINS	GENESIS	MD for proteins
			Genomon	Genome processing (Genome alignment)
			GAMERA	Earthquake simulator (FEM in unstructured & structured grid)
			NICAM+LETK	Weather prediction system using Big data (structured grid stencil & ensemble Kalman filter)
			NTChem	molecular electronic (structure calculation)
			FFB	Large Eddy Simulation (unstructured grid)
itectural Parameters		RSDFT	an ab-initio program (density functional theory)	
SIMD, SIMD length, #core, #NUMA node node ache (size and bandwidth)			Adventure	Computational Mechanics System for Large Scale Analys and Design (unstructured grid)
nomory tochnologies		9	CCS-QCD	Lattice QCD simulation (structured grid Monte Carlo)
nemory technologies specialized hardware nterconnect		<u> </u>		

	Target Application					
	Program	Brief description	Co-design			
1	GENESIS	MD for proteins	Collective comm. (all-to-all), Floating point perf (FPP)			
2	Genomon	Genome processing (Genome alignment)	File I/O, Integer Perf.			
3	GAMERA	Earthquake simulator (FEM in unstructured & structured grid)	Comm., Memory bandwidth			
4	NICAM+LETK	Weather prediction system using Big data (structured grid stencil & ensemble Kalman filter)	Comm., Memory bandwidth, File I/O, SIMD			
5	NTChem	molecular electronic (structure calculation)	Collective comm. (all-to-all, allreduce), FPP, SIMD,			
6	FFB	Large Eddy Simulation (unstructured grid)	Comm., Memory bandwidth,			
7	RSDFT	an ab-initio program (density functional theory)	Collective comm. (bcast), FFP			
8	Adventure	Computational Mechanics System for Large Scale Analysis and Design (unstructured grid)	Comm., Memory bandwidth, SIMD			
9	CCS-QCD	Lattice QCD simulation (structured grid Monte Carlo)	Comm., Memory bandwidth, Collective comm. (allreduce)			


Co-design

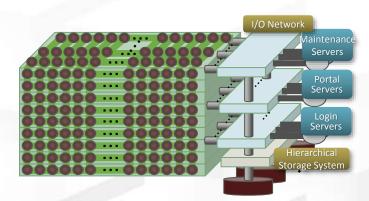
R&D Organization

Outline of Talk

• Introduction of FLAGSHIP2020 project

• An Overview of post K system

Concluding Remarks



An Overview of post K

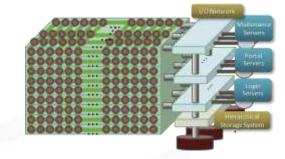
Hardware

- Manycore architecture
- 6D mesh/torus Interconnect
- 3-level hierarchical storage system
 - Silicon Disk
 - Magnetic Disk
 - Storage for archive

System Software

- Multi-Kernel: Linux with Light-weight Kernel
- File I/O middleware for 3-level hierarchical storage system and application
- Application-oriented file I/O middleware
- MPI+OpenMP programming environment
- Highly productive programing language and libraries

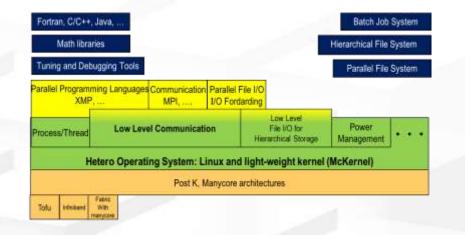
Fortran, C/C++,	Java,				Batch Job	System
Math libraries				Hierarchical File System		
Tuning and Deb	ugging Tools			_	Parallel File	System
Parallel Programm XMP		Communication MPI,	Parallel File I/O I/O Fordarding			
Process/Thread	Low Leve	el Communicati		Low Level File I/O for marchical Storage	Power Management	
	Multi-Kernel	System: Linu	x and light-w	eight kernel (N	(cKernel)	
		Post K, N	anycore archite	ctures		
Totu etneme	Fatre With National					



What we have done

• Hardware

• Instruction set architecture



Software

- OS functional design
- Communication functional design
- File I/O functional design
- Programming languages
- Mathematical libraries

Continue to design

- Node architecture
- System configuration
- Storage system

Instruction Set Architecture

ARM V8 HPC Extension

- Fujitsu is a lead partner of ARM HPC extension development
- Detailed features were announced at Hot Chips 28 2016 http://www.hotchips.org/program/ SVE (Scalable Vector Extension) Mon 8/22 Day1 9:45AM GPUs & HPCs ARMv8-A Next Generation Vector Architecture for HPC E. MAR LIDC COLLER C.

Fujitsu's inheritances

- FMA
- Math acceleration primitives
- Inter core barrier
- Sector cache
- Hardware prefetch assist

Post-K: Fujitsu HPC C	o to Supp	Dort ARM V	8 A	R
Post-K fully utilizes Fujitsu's	proven supe	rcomputer mi	croarchi	tec
Fujitsu, as a "lead partner' working to realize an ARM application performance	of ARM HPC Powered® s	extension de upercompute	evelopn er w/ hig	ne jh
ARM v8 brings out the rea	l strength of	Fujitsu's mic	roarchit	ec
HPC apps acceleration feature	Post-K	FX100	FX10	K
FMA: Floating Multiply and Add	~	~	~	
Math. acceleration primitives*	✓Enhanced	✓Enhanced		

✓Enhanced

✓Enhanced

✓ Integrated

* Mathematical acceleration primitives include trigonometric functions, sine & cosines, and exponential function

V

FUITSU

is

re

1

~

✓Enhanced

✓Enhanced

✓Integrated

mputer

Inter core barrier

Tofu interconnect

Hardware prefetch assist

Sector cache

OS Kernel

• Requirements of OS Kernel targeting high-end HPC

- Noiseless execution environment for bulk-synchronous applications
- Ability to easily adapt to new/future system architectures

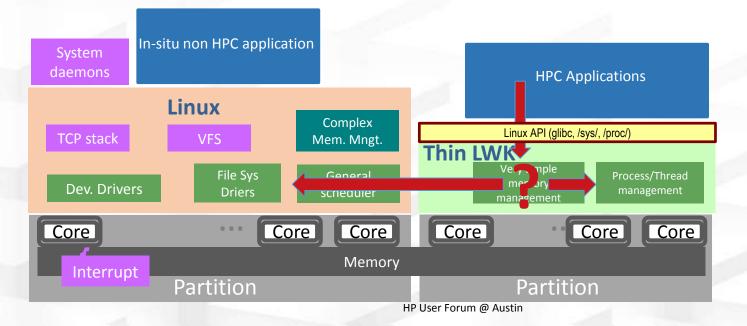
Our Approach:

- E.g.: manycore CPUs, heterogenous core architectures, deep memory hierarchy, etc.
 - New process/thread management, memory management, …
- Ability to adapt t
 - Big-Data, in-s
 - Support data Linux with Light-Weight Kernel
 - Optimize data movement

	Approach	Pros.	Cons.
Full-Weight Kernel (FWK) e.g. Linux		Large community support results in rapid new hardware adaptation	 Hard to implement a new feature if the original mechanism is conflicted with the new feature Hard to follow the latest kernel distribution due to local large modifications
Light-Weight Kernel (LWK)	Implementation from scratch and adding new features	Easy to extend it because of small in terms of logic and code size	 Applications, running on FWK, cannot run always in LWK Small community maintenance limits rapid growth Lack of device drivers

R

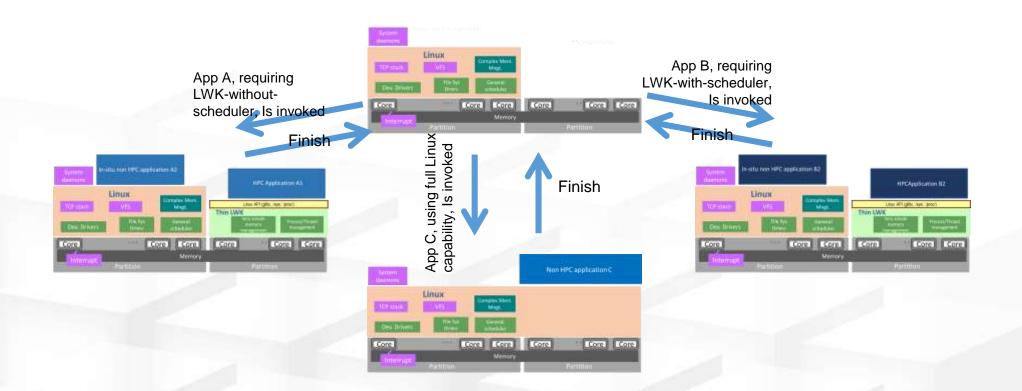
McKernel developed at RIKEN



- Partition resources (CPU cores, memory)
- Full Linux kernel on some cores
 - System daemons and in-situ non HPC applications
 - Device drivers
- Light-weight kernel(LWK), McKernel on other cores
 - HPC applications

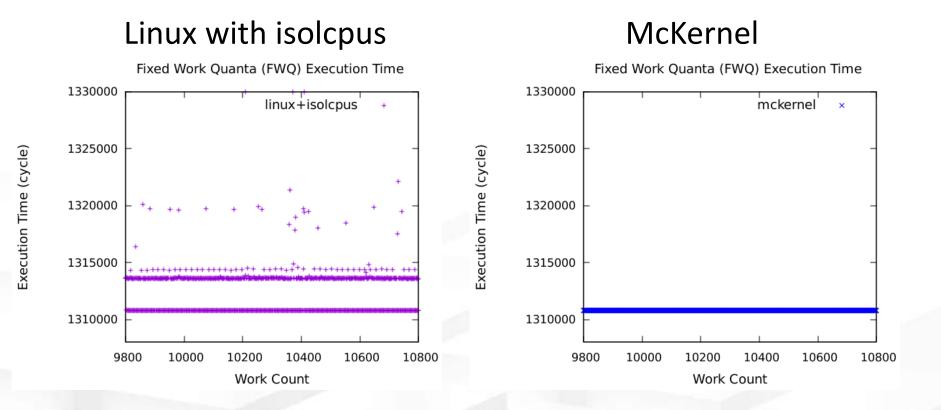
2016/09/07

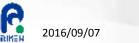
- McKernel is loadable module of Linux
- McKernel supports Linux API
- McKernel runs on
 - Intel Xeon and Xeon phi
 - Fujitsu FX10


McKernel is deployed to the Oakforest-PACS supercomputer, 25 PF in peak, at JCAHPC organized by U. of Tsukuba and U. of Tokyo

OS: McKernel

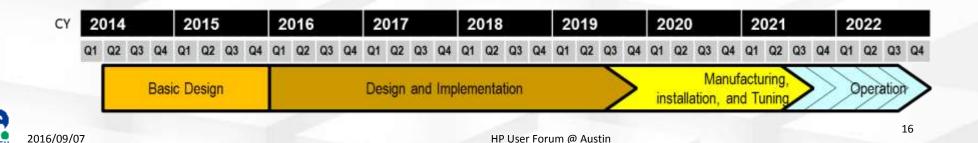
- Linux Kernel + Loadable LWK, McKernel
 - Linux Kernel is resident, and daemons for job scheduler and etc. run on Linux
 - McKernel is dynamically reloaded (rebooted) for each application




OS: McKernel

Results of FWQ (Fixed Work Quanta)

https://asc.llnl.gov/sequoia/benchmarks



HP User Forum @ Austin

Concluding Remarks

- Post K's CPU is based on ARM V8 with HPC extension
- The usability will be improved than the K computer by changing architecture
 - More wide-range community support
- The system software stack for Post K is being designed and implemented with the leverage of international collaborations
 - The software stack developed at RIKEN is Open source
 - It also runs on Intel Xeon and Xeon phi
 - RIKEN would like to contribute to OpenHPC

