

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

High Performance Computing for Flight Projects at JPL

Chris Catherasoo High Performance Computing Office of the CIO

8 October 2010

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Introduction

- JPL and its mission
- Current flight projects
- HPC resources at JPL
 - Institutional HPC resources
 - HPC resources at NASA Ames
- Examples of HPC usage by flight projects
 - Entry, descent and landing simulations
 - The Phoenix Mars Lander radar ambiguity
 - Mars Science Laboratory supersonic parachute design
 - Juno planetary protection trajectory analysis
- Future work
 - Evolutionary computing
 - Low-thrust orbit optimization

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Introduction

- JPL and its mission
- Current flight projects
- HPC resources at JPL
 - Institutional HPC resources
 - HPC resources at NASA Ames
- Examples of HPC usage by flight projects
 - Entry, descent and landing simulations
 - The Phoenix Mars Lander radar ambiguity
 - Mars Science Laboratory supersonic parachute design
 - Juno planetary protection trajectory analysis
- Future work
 - Evolutionary computing
 - Low-thrust orbit optimization

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Jet Propulsion Laboratory overview

JPL is part of NASA and Caltech
Owned by NASA – a "Federally-Funded Research and Development Center" (FFRDC)
Operated by Caltech, under contract to NASA
\$1.7 billion business base
5,000 employees
Site area: 0.75 km²

HPC for Flight Projects at JPL

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

JPL's mission for NASA is robotic space exploration

- Mars
- Solar system
- Exoplanets
- Space science
- Earth science
- Interplanetary network

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Robotic explorers in space JPL

Voyagers 1 and 2 in interstellar space

Cassini at Saturn

Mars Reconnaissance Orbiter

Two Mars Exploration Rovers

Stardust-NExT to comet Tempel 1

EPOXI to comet Hartley 2

Mars Science Laboratory

Dawn to asteroids Ceres and Vesta

HPC for Flight Projects at JPL

6

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Robotic remote sensing on earth

Atmospheric Infrared Sounder (AIRS) provides monthly global temperature maps

Jason provides global sea surface height maps every ten days

Gravity Recovery and Climate Experiment (GRACE) provides monthly maps of Earth's gravity

QuikSCAT provides near global (90%) ocean surface wind

Microwave Limb Sounder Tropospheric Emission (MLS) provides daily maps of stratospheric chemistry

Spectrometer (TES) provides monthly global ozone maps

Multi-angle Imaging Spectro Radiometer (MISR) provides monthly global aerosol maps

maps every 24 hours

CloudSat provides monthly maps of cloud ice water content 8 Oct 10

HPC for Flight Projects at JPL

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

- Introduction
 - JPL and its mission
 - Current flight projects
- HPC resources at JPL
 - Institutional HPC resources
 - HPC resources at NASA Ames
- Examples of HPC usage by flight projects
 - Entry, descent and landing simulations
 - The Phoenix Mars Lander radar ambiguity
 - Mars Science Laboratory supersonic parachute design
 - Juno planetary protection trajectory analysis
- Future work
 - Evolutionary computing
 - Low-thrust orbit optimization

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Institutional HPC resources JPL

Dell Xeon

Clusters

processors • 2 GB per CPU distributed memory

Gigabit ethernet

interconnect

Dell Xeon Cluster

- 1024 3.2 GHz processors
- 2 GB per CPU distributed memory
- Myrinet interconnect

Visualization Center

- Sony SRX-R110 projector
- 12' x 7' display
- Resolution: 4096 x 2160 (8 MPixels)

HP SFS File System

- 2 MDS/Admin servers
- 16 OSS servers
- Read / write > 2 GB/s
- 32 TBytes

Online Storage

- RAID6 system
- 1 PByte

SGI Altix 3700s

- 2 x 256 and 1 x 64 **1.5 GHz processors**
- 2 GB per CPU shared memory
- ccNUMA interconnect

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

HPC resources at NASA Ames

SGI ICE cluster

- Total cores: 84,992
 - 2,304 Westmere (Xeon X5670) nodes
 - 2 six-core processors per node
 - 1,280 Nehalem (Xeon X5570) nodes
 - 2 quad-core processors per node
 - 5,888 Harpertown (Xeon E5472) nodes
 - 2 quad-core processors per node
- Total memory: 133 TB
- Infiniband DDR, QDR interconnect
 - 11-D hypercube topology
- SGI Altix 4700 system
 - Total cores: 4,608 (originally 10,240)
 - Four compute nodes
 - Total memory: 9 TB
 - NUMALink interconnect
 - Single-system image on each compute node

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

- Introduction
 - JPL and its mission
 - Current flight projects
- HPC resources at JPL
 - Institutional HPC resources
 - HPC resources at NASA Ames
- Examples of HPC usage by flight projects
 - Entry, descent and landing simulations
 - The Phoenix Mars Lander radar ambiguity
 - Mars Science Laboratory supersonic parachute design
 - Juno planetary protection trajectory analysis
- Future work
 - Evolutionary computing
 - Low-thrust orbit optimization

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

- Introduction
 - JPL and its mission
 - Current flight projects
- HPC resources at JPL
 - Institutional HPC resources
 - HPC resources at NASA Ames

Examples of HPC usage by flight projects

- Entry, descent and landing simulations
- The Phoenix Mars Lander radar ambiguity
- Mars Science Laboratory supersonic parachute design
- Juno planetary protection trajectory analysis
- Future work
 - Evolutionary computing
 - Low-thrust orbit optimization

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Spacecraft components in cruise configuration

JPL

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Entry, descent and landing JPL

- Entry, Descent and Landing (EDL) is the sequence of events that brings a spacecraft safely to the surface of a planet
- It consists of several phases
 - Cruise stage separates before entering the atmosphere
 - Entry phase
 - Aerobraking friction with the planetary atmosphere is used to slow the spacecraft from over 5,500 m/s to 500 m/s in about 220 s
 - Descent phase
 - Parachute braking slows the spacecraft down to 100 m/s in 20 s
 - Landing phase
 - The parachute separates and spacecraft lands
 - Retro rockets
 - Airbags
 - Sky crane
- For Mars, the EDL sequence takes about 7 minutes
 - Signal time from Mars to Earth is about 10 minutes

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Entry, descent and landing simulations

- EDL simulations are one of the most mission-critical HPC applications run at JPL
 - The simulations involve multi-body dynamics of the parachute, backshell and lander system
 - The EDL application is the "Program to Optimize Simulated Trajectories" (POST)
 - Was developed at NASA Langley
 - Uses a 6 degrees of freedom modelling scheme
 - Inputs include ambient atmospheric conditions and wind speeds
 - Monte Carlo simulations are performed to determine spacecraft entry, descent and landing characteristics to evaluate safety metrics for landing
 - EDL simulations are used to
 - Down-select landing sites, and to choose the final landing site
 - Apply final trajectory maneuver corrections to the spacecraft prior to cruise stage separation

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

EDL simulations used for JPL missions to Mars

EDL simulations used successfully for

- Mars Pathfinder
 - Landed: 4 July 1997
 - Length: 0.65 m; weight: 10.6 kg
- Mars Exploration Rovers twin rovers
 - Landed: 3 January 2004 and 24 January 2004 respectively
 - Length: 1.6 m; weight: 180 kg
- Mars Phoenix Lander
 - Landed: 25 May 2008
 - Length: 1.5 m; weight: 350 kg
- Upcoming
 - Mars Science Laboratory
 - Launch: November 2011
 - Length: 2.7 m; weight: 950 kg

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

- Introduction
 - JPL and its mission
 - Current flight projects
- HPC resources at JPL
 - Institutional HPC resources
 - HPC resources at NASA Ames

Examples of HPC usage by flight projects

- Entry, descent and landing simulations
- The Phoenix Mars Lander radar ambiguity
- Mars Science Laboratory supersonic parachute design
- Juno planetary protection trajectory analysis
- Future work
 - Evolutionary computing
 - Low-thrust orbit optimization

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

- The Phoenix Mars Lander was launched in August 2007
 - Mission was to explore the Martian polar region for evidence of water
- The lander used a radar to obtain ground-relative altitude and velocity during terminal descent
- Both helicopter field tests and simulations were used to validate the radar performance

- Analysis of the radar simulation data showed that the presence of the jettisoned heat shield could cause radar to lock on a range ambiguity
 - The radar was not locking on to the heat shield
 - Did not occur in the absence of the heat shield

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

- The radar erroneously reported an altitude that was much lower than the true lander altitude
 - Could not be distinguished from the expected altitude behavior
 - Would have caused the premature separation of the lander from the backshell
 - Result would have been catastrophic loss of the mission
- The problem was impossible to characterize analytically
 - Too many contributing parameters lander altitude, heatshield range, heatshield radar cross-section, heatshield attitude, attitude rate
- With only eight months to go before launch, resolving this problem became a critical activity
- Hundreds of thousands of radar simulation runs were made to characterize the design space
 - Phoenix was given highest priority on all the laboratory's clusters

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

- Results were plotted on radar ambiguity maps
 - Each dot is the result of a single simulation that took about 3.5 core hours to run
 - Gray: No target acquisition
 - Green: Radar correctly locked on the ground
 - Red: Radar incorrectly (ambiguously) locked on the ground
 - Cyan: Points at which radar begins making measurements

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

- The problem was resolved by
 - Delaying the start of the radar search
 - Modifying the radar Pulse Repetition Interval (PRI)
- The modified radar was field tested, and the updated radar-model simulation results were used to verify that the problem had been eliminated

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

- Introduction
 - JPL and its mission
 - Current flight projects
- HPC resources at JPL
 - Institutional HPC resources
 - HPC resources at NASA Ames

Examples of HPC usage by flight projects

- Entry, descent and landing simulations
- The Phoenix Mars Lander radar ambiguity
- Mars Science Laboratory supersonic parachute design
- Juno planetary protection trajectory analysis
- Future work
 - Evolutionary computing
 - Low-thrust orbit optimization

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

The Mars Science Laboratory JPL supersonic parachute design

- The Mars Science Laboratory (MSL) will be launched in November 2011
 - Mission is to detect and study organic molecules on the surface of Mars
- Will employ advanced entry, descent and landing techniques
 - 21.5 m diameter supersonic parachute
 - Powered descent vehicle with 8 Mars Landing Engines (MLEs)
 - Sky-crane tethered landing of rover

HPC for Flight Projects at JPL

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

The Mars Science Laboratory supersonic parachute design

- A Parachute Decelerator System (PDS) provides the most efficient means of slowing an entry vehicle from supersonic to subsonic speeds
 - Prepares the vehicle for safe heatshield separation
 - Prepares the vehicle for powered descent
 - Attitude and velocity
- MSL PDS characteristics
 - 21.5 m Viking-type Disk-Gap-Band type parachute
 - Viking parachute was 16.1 m
 - Similar capsule to parachute diameter scaling as Vikings
 - Deployed at Mach 2.3
 - Limits time above Mach 1.5 (~10s)
 - Modern materials nylon, Kevlar and Technora

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

The Mars Science Laboratory Supersonic parachute design

- Supersonic parachute instability
 - In 1960s, high altitude (~50 km) supersonic parachute tests were performed
 - Showed canopy instabilities at Mach Numbers above 1.5
 - Partial inflations and collapses of the parachute, termed "Area Oscillations"
 - Resulting in projected area and drag fluctuations of the canopy
 - Resulted in load spikes after the first full open

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

The Mars Science Laboratory supersonic parachute design

Scaling up from Viking to MSL

- A simulation capability was developed to extrapolate the Viking data to the larger scale and with different materials
 - Alternative would have been expensive high-altitude tests
- Aerodynamic and dynamic performance of the MSL parachute in the supersonic regime is determined from
 - Subscale wind tunnel testing
 - Computational simulations

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

The Mars Science Laboratory supersonic parachute design

- Computational qualification approach
 - Developed CFD and FSI tools to model the physics of interest
 - Validated the simulations using wind tunnel data from scaled models
 - Piecewise validation approach
 - Capsule only
 - Rigid parachute only
 - Capsule and rigid parachute
 - Capsule and flexible parachute
 - Used simulations to explore the parachute behavior at different sizes and materials
 - Validate the Viking parachute behavior over a range of sizes, materials and flight conditions
 - Extrapolate to the MSL parachute size, materials and flight conditions

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

The Mars Science Laboratory ^{••} supersonic parachute design

- The parachute simulation application
 - Based on the Virtual Test Facility (VTF), a CFD/FEM toolkit
 - Originally developed at the California Institute of Technology for the Department of Energy
 - Further developed by University of Illinois and Cambridge University
 - Uses a 3-D Large Eddy Simulation solver coupled to FEM solver
 - Fluid is simulated using unsteady, compressible, large-eddy simulations in an Eulerian-Cartesian mesh ~ 50 million cells
 - Canopy is simulated using large-deformation thin-shell Kirchhoff-Love finite elements on a Lagrangian mesh ~ 10,000 elements
 - Four levels of adaptive mesh refinement are used for finer resolution as needed
 - Validated by comparison to the (4%) scaled wind-tunnel experiments
 - Following validation, the code is being used to simulate the fullscale parachute

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

The Mars Science Laboratory supersonic parachute design

Simulations

- Simulation domain is [-3,5] x [-1,1] x [-1,1] m
 - Initially run on a Dell-Myrinet Xeon cluster (64 to 206 processors)
 - Subsequently run on an SGI Altix 3700 system with 96 processors allocated to the fluid and 4 to the solid
- Simulation results showed that the parachute supersonic behaviour and performance were as expected

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

- Introduction
 - JPL and its mission
 - Current flight projects
- HPC resources at JPL
 - Institutional HPC resources
 - HPC resources at NASA Ames

Examples of HPC usage by flight projects

- Entry, descent and landing simulations
- The Phoenix Mars Lander radar ambiguity
- Mars Science Laboratory supersonic parachute design
- Juno planetary protection trajectory analysis
- Future work
 - Evolutionary computing
 - Low-thrust orbit optimization

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Juno planetary protection trajectory analysis

- The Juno spacecraft will be launched in August 2011
 - Mission is to orbit Jupiter to study its origin and evolution
 - Will measure Jupiter's gravity field, and explore the Jovian atmosphere and magnetosphere
- Juno's highly eccentric orbit could lead to potential impact with the Galilean satellites (Io, Europa, Ganymede and Callisto)
 - These large icy moons are of particular interest for future exobiology and astrobiology exploration
 - Potentially contain biological and/or organic materials

Jet Propulsion Laboratory California Institute of Technology Pasadena, California Juno planetary protection trajectory analysis

- Planetary protection requirements dictate that during its prime mission Juno must not collide with any of the Galilean satellites
 - Any collision would cause contamination that would jeopardize future explorations
- Juno's planned mission is for one year, after which it will be de-orbited into Jupiter's atmosphere
 - In case de-orbiting is unsuccessful, planetary protection requirements must be met for a further period of 150 years

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Juno planetary protection trajectory analysis

- Monte-Carlo techniques were employed to determine the collision probabilities
 - Required the analysis of thousands of trajectory states for hundreds of years for each case
 - The wall-clock time for a single trajectory propagation was about 10 hours
 - On one CPU, a single case would have taken over a year to complete

Example of a Juno trajectory

- Were able to complete each Monte-Carlo run in less than 12 hours, instead of the estimated year
- HPC enabled the investigation of many failure scenarios and potential baseline trajectories

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

- Introduction
 - JPL and its mission
 - Current flight projects
- HPC resources at JPL
 - Institutional HPC resources
 - HPC resources at NASA Ames
- Examples of HPC usage by flight projects
 - Entry, descent and landing simulations
 - The Phoenix Mars Lander radar ambiguity
 - Mars Science Laboratory supersonic parachute design
 - Juno planetary protection trajectory analysis
- Future work
 - Evolutionary computing
 - Low-thrust orbit optimization

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Evolutionary computing

- Evolutionary computing seeks to mimic processes used in nature to optimize multi-parameter engineering designs
 - Uses sophisticated biological operators
 - Selection
 - Mutation
 - Recombination
- Advantages
 - Enables larger design spaces to be explored than could be examined manually or by computational brute force
 - Results have shown competitive advantages over humancreated designs

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Low-thrust orbit optimization JPL

- Low-thrust propulsion is more efficient than chemical propulsion
 - Uses less propellant
 - Demonstrated on Deep Space 1 and currently on Dawn
- Requires different trajectory optimization techniques
 - Involves many revolutions and continuous thrust arcs
- Goal is to optimize the trade-off between propellant mass and flight time for orbit transfers
 - Thrust angles and thrust arcs are optimized with Q-law
 - Q-law has 12 independent parameters
- In this work, the Q-law parameters are optimized using evolutionary algorithms
- Evolutionary algorithms are amenable to parallel computing implementation

NASA

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology

Pasadena, California

Low-thrust orbit optimization JPL

Circle-to-circle orbit transfers Flight-time optimal Edelbaum transfer 42 41 x 10 GA/SA driven Q-law 40 Nominal Q-law Propellant Mass (kg) Edelbaum 39 38 37 36 -3 -4 -1 0 X (km) x 10⁴ Propellant optimal 300 Hohmann transfer 35 100 200 $\overline{0}$ Flight Time (days)

² ³ ⁴ ⁵ 38 ³ ⁶ ⁵ 38 8 Oct 10

0 X (km)

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

- Desai, P.N., et al., "Mars Exploration Rovers Entry, Descent and Landing Trajectory Analysis", AIAA paper 2004-5092, 16 - 19 August 2004.
- Skulsky, E.D., et al., "Under the Radar: Trials and Tribulations of Landing on Mars", AAS paper #08-043, 1 - 6 February 2008.
- Sengupta, A., et al., "Results from the Mars Science Laboratory Parachute Decelerator System Supersonic Qualification Program", IEEEAC paper #1435, Version 3, Updated December 20, 2007.
- Lam, T., et al., "Planetary Protection Trajectory Analysis for the Juno Mission", AIAA paper 2008-7368, 18 - 21 August 2008.
- Terrile, R.J., et al., "Evolutionary Computation Technologies for Space Systems", IEEEAC paper #1257, Version 6, Updated December 29, 2004.
- Lee, S,. et al., "Design and Optimization of Low-Thrust Orbit Transfers", IEEEAC paper #2.1204, 5 - 12 March 2005.

Jet Propulsion Laboratory California Institute of Technology Pasadena, California Thank you!

Questions and/or comments?

Contact information: Christopher.J.Catherasoo@jpl.nasa.gov +1 818 354 7180

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Backup Slides

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

End-to-end mission development

Project formulation

Mission design

Scientific research

Real time operations

Environmental test

Integration and test

Spacecraft development

42

8 Oct 10

HPC for Flight Projects at JPL

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

The Mars Science Laboratory Supersonic parachute design

- Geometry and mesh
 - Fluid flow region had approximately 50 million cells
 - Canopy had 92,016 finite elements
 - Four levels of mesh refinement were used
 - The grid was iteratively designed with knowledge of the wake and shock structures
 - Well-designed grids are essential for correct representation of flow fields

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Critical engineering achievements using HPC

Landingsite analyses

CIELO high-fidelity integrated thermal/ structural/optical aberration analyses

Entry, descent and landing simulations

Supersonic parachute design coupled CFD-FEM simulations

Flight Time = 2.0 days

Flight Time = 10.6 days

Optimization of low-thrust orbit transfers using evolutionary techniques Juno spacecraft impact probabilities with Jupiter's Galilean satellites

HPC for Flight Projects at JPL