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o Jet Propulsion Laboratory JPL

Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California OV ! rVI ‘ !

PP LIS part of NASA and Caltech

Owned by NASA - a “Federally-Funded
Research and Development Center’ (FFRDC)

Operated by Caltech, under contract to NASA
$1.7 billion business base
5,000 employees*
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s JPL's mission for NASA s )
=z robotic space exploration

= Mars

= Solar system

Exoplanets
= Space science

= Earth science

= |nterplanetary network
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Atmospheric Infrared Jason pr6_\7ides global Gravity Recovery and QuikSCAT provides
Sounder (AIRS) sea surface height maps Climate Experiment near global (90%)
provides monthly global every ten days (GRACE) provides monthly  ocean surface wind

temperature maps maps of Earth’s gravity maps every 24 hours
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\"'ié:s?zh :

Microwave Limb Sounder Troposphe'r= Emission Multi-angle Imaging CloudSat provides
(MLS) provides daily maps Spectrometer (TES) Spectro Radiometer monthly maps of cloud
of stratospheric chemistry  provides monthly (MISR) provides monthly ice water cont%nt
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= HPC resources at JPL

= |nstitutional HPC resources
= HPC resources at NASA Ames
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Dell Xeon

Clusters
« 2 x512 3.06 GHz
processors

* 2 GB per CPU
distributed
memory

* Gigabit ethernet
interconnect

Dell Xeon Cluster

¢ 1024 3.2 GHz processors HP SFS File System

* 2 GB per CPU distributed « 2 MDS/Admin servers SGI Altix 3700s
memory * 16 OSS servers

* Read / write > 2 GB/s

*2x256 and 1x64
1.5 GHz processors

* Myrinet interconnect

* 32 TBytes « 2 GB per CPU shared
memory
* ccCNUMA interconnect
Visualization Center
« Sony SRX-R110 projector Online Storage
+ 12’ x 7" display « RAID6 system
* Resolution: 4096 x 2160 (8 MPixels) - 1 PByte
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= SGI ICE cluster

= Total cores: 84,992

= 2,304 Westmere (Xeon X5670) nodes
= 2 Six-core processors per node
= 1,280 Nehalem (Xeon X5570) nodes
= 2 gquad-core processors per node
= 5,888 Harpertown (Xeon E5472) nodes
= 2 quad-core processors per node
= Total memory: 133 TB

= |nfiniband DDR, QDR interconnect
= 11-D hypercube topology

= SGI Altix 4700 system

@/ o e HPC resources at

= Four compute nodes
= Total memory: 9 TB
= NUMALInK interconnect

HPC for Flight Projects at JPL
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= Examples of HPC usage by flight projects
= Entry, descent and landing simulations
The Phoenix Mars Lander radar ambiguity
Mars Science Laboratory supersonic parachute design
Juno planetary protection trajectory analysis
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= Examples of HPC usage by flight projects
= Entry, descent and landing simulations
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S Spacecraft components In
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e cruise configuration

Cruise Stage

Lander

Heatshield
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= Entry, Descent and Landing (EDL) is the sequence of
events that brings a spacecraft safely to the surface of
a planet

= |t consists of several phases

= Cruise stage separates before entering the atmosphere
= Entry phase

= Aerobraking — friction with the planetary atmosphere is used to slow
the spacecraft from over 5,500 m/s to 500 m/s in about 220 s

= Descent phase
= Parachute braking — slows the spacecraft down to 100 m/sin 20 s
= Landing phase

= The parachute separates and spacecraft lands
= Retro rockets
= Airbags
= Sky crane

= For Mars, the EDL sequence takes about 7 minutes
= Signal time from Mars to Earth is about 10 minutes 14
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see Typical entry, descent and
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i landing sequence
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= EDL simulations are one of the most mission-critical
HPC applications run at JPL

= The simulations involve multi-body dynamics of the parachute,
backshell and lander system

= The EDL application is the “Program to Optimize Simulated
Trajectories” (POST)

= \Was developed at NASA Langley
= Uses a 6 degrees of freedom modelling scheme
= Inputs include ambient atmospheric conditions and wind speeds

= Monte Carlo simulations are performed to determine spacecraft
entry, descent and landing characteristics to evaluate safety
metrics for landing

= EDL simulations are used to

= Down-select landing sites, and to choose the final landing site

= Apply final trajectory maneuver corrections to the spacecratft prior to
cruise stage separation

16
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R EDL simulations used for
.-\ J | Jcetl_srop_mlsion_ |_abo;aTtor3;1 | 0 - J pL
o e JPL missions to Mars

= EDL simulations used successfully for

= Mars Pathfinder
= Landed: 4 July 1997
= Length: 0.65 m; weight: 10.6 kg
= Mars Exploration Rovers — twin rovers
= Landed: 3 January 2004 and 24 January 2004 respectively
= Length: 1.6 m; weight: 180 kg
= Mars Phoenix Lander
= Landed: 25 May 2008
= Length: 1.5 m; weight: 350 kg
= Upcoming
= Mars Science Laboratory
= Launch: November 2011 20
= Length: 2.7 m; weight: 950 kg e

g
v
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= Examples of HPC usage by flight projects

The Phoenix Mars Lander radar ambiguity
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=z The Phoenix Mars Lander
e . S JPL
e cata radar ambiguity

= The Phoenix Mars Lander was
launched in August 2007
= Mission was to explore the Martian
polar region for evidence of water
= The lander used a radar to obtain
ground-relative altitude and
velocity during terminal descent

= Both helicopter field tests and
simulations were used to validate
the radar performance

= Analysis of the radar simulation data showed that the
presence of the jettisoned heat shield could cause
radar to lock on a range ambiguity

= The radar was not locking on to the heat shield
= Did not occur in the absence of the heat shield

19
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= The radar erroneously reported an altitude that was
much lower than the true lander altitude

= Could not be distinguished from the expected altitude behavior

= Would have caused the premature separation of the lander
from the backshell

= Result would have been catastrophic loss of the mission

= The problem was impossible to characterize
analytically

= Too many contributing parameters — lander altitude, heatshield
range, heatshield radar cross-section, heatshield attitude,
attitude rate

= With only eight months to go before launch, resolving
this problem became a critical activity

= Hundreds of thousands of radar simulation runs were
made to characterize the design space

= Phoenix was given highest priority on all the laboratory’s
clusters 20
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e Phoenix Mars Lander
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California Institute of Technology

radar ambiguity

= Results were plotted on radar ambiguity maps

= Each dot is the result of a single simulation that took about 3.5
core hours to run

= Gray: No target acquisition
= Green:. Radar correctly locked on the ground

= Red: Radar incorrectly (ambiguously) locked on the ground
= Cyan: Points at which radar begins making measurements

Lander Altitude (m)

Heatshield Range (m)
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= The problem was resolved by

= Delaying the start of the radar search
= Modifying the radar Pulse Repetition Interval (PRI)
= The modified radar was field tested, and the updated

radar-model simulation results were used to verify that
the problem had been eliminated

@ e The Phoenix Mars Lander

OOOOO

0000

Lander Altitude (m)
Lander Altitude (m)

Heatshield Range (m) T Heatshield Range (m)
Problem Resolution
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= Examples of HPC usage by flight projects

Mars Science Laboratory supersonic parachute design

23
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@/ izt The Mars Sclence Laboratory JPL
wmmmT supersonic parachute design

= The Mars Science Laboratory (MSL) will be launched
In November 2011

= Mission is to detect and study organic molecules on the surface
of Mars

= Will employ advanced entry, descent and landing
techniques

= 21.5 m diameter supersonic parachute
= Powered descent vehicle with 8 Mars Landing Engines (MLES)
= Sky-crane tethered landing of rover

24
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Jet Propulsion Laboratory

wmmmT supersonic parachute design

= A Parachute Decelerator System (PDS) provides the
most efficient means of slowing an entry vehicle from
supersonic to subsonic speeds

= Prepares the vehicle for safe
heatshield separation

= Prepares the vehicle for
powered descent

= Attitude and velocity
= MSL PDS characteristics
= 21.5 m Viking-type Disk-Gap-
Band type parachute
= Viking parachute was 16.1 m
= Similar capsule to parachute diameter scaling as Vikings
= Deployed at Mach 2.3
= Limits time above Mach 1.5 (~10s)

= Modern materials — nylon, Kevlar and Technora

@, =™ The Mars Sclence Laboratory JPL
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Jet Propulsion Laboratory

wmmmT supersonic parachute design

= Supersonic parachute instability

= |n 1960s, high altitude (~50 km) supersonic parachute tests
were performed

= Showed canopy instabilities at Mach Numbers above 1.5

= Partial inflations and collapses of the parachute, termed “Area
Oscillations”

= Resulting in projected area and drag fluctuations of the canopy
= Resulted in load spikes after the first full open

@/ s The Mars Sclence Laboratory JPL
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wmmmT supersonic parachute design

= Scaling up from Viking to MSL
= A simulation capability was developed to extrapolate the Viking
data to the larger scale and with different materials
= Alternative would have been expensive high-altitude tests

= Aerodynamic and dynamic performance of the MSL parachute
In the supersonic regime is determined from

= Subscale wind tunnel testing
= Computational simulations

SR
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F Jet Propulsion Laboratory

wmmmT supersonic parachute design

= Computational qualification approach

= Developed CFD and FSI tools to model the physics of interest

= Validated the simulations using wind tunnel data from scaled
models

= Piecewise validation approach
= Capsule only
= Rigid parachute only
= Capsule and rigid parachute
= Capsule and flexible parachute

= Used simulations to explore the parachute behavior at different
sizes and materials

= Validate the Viking parachute behavior over a range of sizes,
materials and flight conditions

= Extrapolate to the MSL parachute size, materials and flight
conditions

28
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wmmmT supersonic parachute design

= The parachute simulation application

Based on the Virtual Test Facility (VTF), a CFD/FEM toolkit

= Qriginally developed at the California Institute of Technology for the
Department of Energy

= Further developed by University of lllinois and Cambridge University

Uses a 3-D Large Eddy Simulation solver coupled to FEM
solver

= Fluid is simulated using unsteady, compressible, large-eddy
simulations in an Eulerian-Cartesian mesh ~ 50 million cells

= Canopy is simulated using large-deformation thin-shell Kirchhoff-
Love finite elements on a Lagrangian mesh ~ 10,000 elements

= Four levels of adaptive mesh refinement are used for finer resolution
as needed

Validated by comparison to the (4%) scaled wind-tunnel
experiments

Following validation, the code is being used to simulate the full-
scale parachute

29
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wmmmT supersonic parachute design

= Simulations
= Simulation domain is [-3,5] x [-1,1] x [-1,1] m
= Initially run on a Dell-Myrinet Xeon cluster (64 to 206 processors)

= Subsequently run on an SGI Altix 3700 system with 96 processors
allocated to the fluid and 4 to the solid

= Simulation results showed that the parachute supersonic
behaviour and performance were as expected

30
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= Examples of HPC usage by flight projects

= Juno planetary protection trajectory analysis
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e Juno planetary protection =
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e trajectory analysis

= The Juno spacecraft will be launched
In August 2011

= Mission is to orbit Jupiter to study its origin
and evolution

= Will measure Jupiter’s gravity field, and
explore the Jovian atmosphere and
magnetosphere

= Juno’s highly eccentric orbit could
lead to potential impact with the
Galilean satellites (lo, Europa,
Ganymede and Callisto)
= These large icy moons are of
particular interest for future

exobiology and astrobiology
exploration

= Potentially contain biological
and/or organic materials

32
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e Juno planetary protection
B Jet Propulsion Laboratory p y p JPL

S trajectory analysis

= Planetary protection requirements dictate that during
Its prime mission Juno must not collide with any of the
Galilean satellites

= Any collision would cause contamination that would jeopardize
future explorations

= Juno’s planned mission is for one year, after which it

Wi | | b e d e = O rb ite d i n to Earth-to-Jupiter View (Jupﬂgrrl\l‘o:'ulz?la Up), 1-day ﬂgl:!fl?cs fgrfogtgre Orbit and Pre-JOI
Jupiter’'s atmosphere =
= |n case de-orbiting is

unsuccessful, planetary

protection requirements

must be met for a further T —— T omren

period of 150 years

Jupiter North Pole View, Sun Direction Up (yellow dashed line)
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it trajectory analysis

= Monte-Carlo techniques were employed to determine
the collision probabillities
= Required the analysis of thousands

of trajectory states for hundreds of
years for each case

= The wall-clock time for a single
trajectory propagation was about
10 hours

= Onone CPU, a single case would 5
have taken over a year to complete eober 14,207 7:45 0

= Were able to complete each Monte- Eample o Juno rajectory
Carlo run in less than 12 hours, instead of the estimated year

= HPC enabled the investigation of many failure
scenarios and potential baseline trajectories

Euro%gnymsdi
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= Future work

= Evolutionary computing
= Low-thrust orbit optimization
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California Institute of Technology
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= Evolutionary computing seeks to mimic processes
used in nature to optimize multi-parameter engineering
designs

= Uses sophisticated biological operators
= Selection

= Mutation
= Recombination

= Advantages

= Enables larger design spaces to be explored than could be
examined manually or by computational brute force

= Results have shown competitive advantages over human-
created designs

36
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8 ... Low-thrust orbit optimization JPL

California Institute of Technolo
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= Low-thrust propulsion is more efficient than chemical
propulsion
= Uses less propellant
= Demonstrated on Deep Space 1 and currently on Dawn

= Requires different trajectory optimization techniques
= |nvolves many revolutions and continuous thrust arcs

= Goal is to optimize the trade-off between propellant
mass and flight time for orbit transfers

= Thrust angles and thrust arcs are optimized with Q-law
= Q-law has 12 independent parameters

= In this work, the Q-law parameters are optimized using
evolutionary algorithms

= Evolutionary algorithms are amenable to parallel
computing implementation
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Circle-to-circle orbit transfers
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Spacecraft
development

Real time operations Environmental Integration

test and test 42
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iz The Mars Science Laboratory JPL

wmmmT supersonic parachute design

= Geometry and mesh
= Fluid flow region had approximately 50 million cells
= Canopy had 92,016 finite elements
= Four levels of mesh refinement were used

= The grid was iteratively designed with knowledge of the wake
and shock structures

= Well-designed grids are essential for correct representation of
flow fields

H
I
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Landing- CIELO high-fidelity
site integrated thermal/
analyses structural/optical

aberration analyses

Supersonic
parachute design

coupled CFD-FEM
simulations

Entry, descent
and landing
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o Juno spacecraft
Optimization (_)f impact
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