

HPC User Forum

at

MINISTRY OF EDUCATION, CULTURE, SPORTS, SCIENCE AND TECHNOLOGY-JAPAN High Performance Computing Center Stuttgart

HPC in Japan

Oct. 7, 2010

Toshikazu Takada

Office of Supercomputer Development Promotion

MEXT

Contents

science and technology policy in Japan

- Features of the next generation supercomputer
- specially designed application software in nano and life sciences
- strategic program to promote HPC activity in Japan
- > new attempt named HPCI to link all computer facilities in Japan
- ➤ conclusions

Outline of the 3rd S&T Basic Plan (2006-2010) by CSTP

1. Fundamental Concept

- Recent situation revolving around S&T
- Basic stance toward the 3rd plan
- Fundamental ideas and policy goals
- Total governmental R&D investment:
 ¥25 trillion (210 billion euro)

3. S&T system reforms

- Fostering S&T personnel and providing opportunities
- Progress in science and leading to innovation
- Upgrading infrastructures for S&T promotion
- Strategic commitment on international S&T activities

The chairman of CSTP is the prime minster

2. Strategic Priority Setting in S&T

 Promotion of basic researches
 Prioritization of R&D for policy-oriented subjects <u>Primary prioritized areas</u>; Life science, IT, <u>Environmental sciences, Nano-tech. & materials</u> <u>Secondary prioritized areas</u>; Energy, MONODZUKURI tech., Infrastructure, Frontier (outer space & oceans)
 Promotion strategy for the prioritized areas

4. Public Confidence and Engagement

- Responsible actions regarding ethical, legal and social issues
- Reinforcement of accountability and public relations of S&T activities
- Promotion of public understanding of S&T
- Facilitation of public engagement with S&Trelated issues

5. Missions of the **CSTP**

- More efficient and effective management of governmental R&D
- Break of institutional or operational bottle necks
- Follow-up of the Plan and promotion of progress in S&T

Key Technologies of National Importance

Chosen in the 3rd Basic Plan

Next Generation Supercomputer

X-ray free electron laser

Space transport system

Ocean & earth exploration system

Fast breeder reactor

Next Generation Supercomputer named "KEI"

- The nickname of Next-generation Supercomputer is "京 (KEI)" which means 10 peta in Japanese
- Another meaning of "京 (KYO)" is "Land of Emperor Palace"

Goals of the Next Generation Supercomputer Project

The 3rd Science and Technology Basic Plan (FY2006-FY2010)

- ➤ To develop an advanced high performance supercomputer system (10petaflops) → Next-Generation Supercomputer
- To develop technologies to efficiently use it including application software
- To establish Center of Excellence for computational science established as Advanced Institute for Computational Science
- The 4th Science and Technology Basic Plan (FY2011-FY2015)
 - Now under discussion toward exa flops

<u>System Configuration</u> \sim Scalar processors based system \sim

Photo of Proto-Type System

Compute Nodes of KEI

- Compute nodes (CPUs): > 80,000
 - Number of cores: > 640,000
- Peak performance: > 10PFLOPS
- Memory: > 1PB (16GB/node)

- Logical 3-dimensional torus network
- Peak bandwidth: 5GB/s x 2 for each direction of logical 3-dimensional torus network
- bi-section bandwidth: > 30TB/s

Image of the K computer

There will more than 800 cabinets

The Next-Generation Supercomputer Project

Schedule

Open use to public

		FY2006	FY2007	FY2008	FY2009	FY	2010	FY2011	FY20	12
System		Concer desig	otual / Detai	led design	Prototype an evaluation	d I	roductio and ad	n, installation, justment	Tunir improve	g and ment
Applications	Next-Generation Integrated Nano-science Simulation		Development, production, and evaluation							
	Next-Generatior Integrated Life Simulation	Development, production, and evaluation						Verifi		
Buildings	Computer building		Design	Construction						
	Research building		Desi	gn C	onstruction					

- We are now here

Location of the Supercomputer Site, Kobe-City

Image of Research and Computer Buildings

(Advanced Institute for Computational Science)

The first cargo of the computer racks have been delivered on Sept. 29.

Delivery will continue.

Nearly 200 researchers will work there.

Pictures of Inside of the building

Computer room (3F)

Chillers

Solar panels on the top

Making a double floor

Research building

2010/10/7

Major Applications of Next Generation Supercomputer

National Project to Develop

Grand Challenges Application Codes

The objective of this project is to develop codes which demonstrate the full capability of the Next Generation Supercomputer

Life Science

Conducting Institute: RIKEN Budget for 2008 Fiscal Year: 14.4 Million US Dollars Contributing Institutes and Universities: 14

Nano Science

Conducting Institute: Institute for Molecular Science (IMS) Budget for 2008 Fiscal Year: 5.6 Million US Dollars Contributing Institutes and Universities: 6

Basic Concept for Simulations in Life Sciences

Basic Concept for Simulations in Nano-Science

Five Strategic Simulation Fields from National Point of View

Creation of High-Performance Conputing Infra-structure (HPCI)

After re-evaluation of the Next-Generation Supercomputer Project by the new government, the project has been restarted as "Creation of the Innovative High-Performance Conputing Infra-structure (HPCI)".

<Goals of HPCI>

- To establish a hierarchical organization of the Next-Generation
 Supercomputer linked with other supercomputers at universities
- To set up a large-scale storage system for the Next-Generation Supercomputer and other supercomputers
- To establish a consortium, which will lead the creation of HPCI

Organizations Participated in HPCI

The 10 core organizations are now working on figuring out the action plans for HPCI

Activities for Industrial Usage of HPC in Japan

- 1. Industrial use of university computer under support by MEXT
 - nearly 40 industries join program organized by MEXT
 - Nest Generation Supercomputer will provide CPU hours for industries
- 2. Private organizations newly created to promote simulations
 - •organizing seminars and practice of application software
 - FOCUS (Foundation for Computational Science) • more than 40 companies joined
 - targeting at industries in KANSAI region
 - ♦ ICSCP (Industrial Committee for Super Computing Promotion
 - more than 170 companies joined
 - mainly targeting at industries related manufactures
 - BioGrid (NPO Bio Grid Center KANSAI)

nearly 30 companies joined

targeting at medical industries for drug designs

- 3. SaaS business begun by software houses as a service provider
 - university computers joined as resource providers

Concluding Remarks

- Time for simulations to move from fundamental research levels to actual applications both in academic and industrial sectors
 - •Giga FLOPS ~: car crush, structure analysis
 - Tera FLOPS ~: global warming prediction, jet-plane designing
 - Peta FLOPS ~: functional materials, tailor made medicine
 - •Exa FLOPS ~: ???
- 2. Time to create new mechanisms to let experimentalists use simulations as daily research tools
 - simulation results are nothing but information
 - •HPCI will be a first step as the new mechanism
 - HPC cloud or HPC as a Service (HPCaaS) might be an answer
- 3. Time for computational scientists to truly collaborate with computer scientists for effective use of many node computers
 - •entering into un-experienced world of many cores and many nodes
 - necessity of tuning beyond knowledge of computational scientists