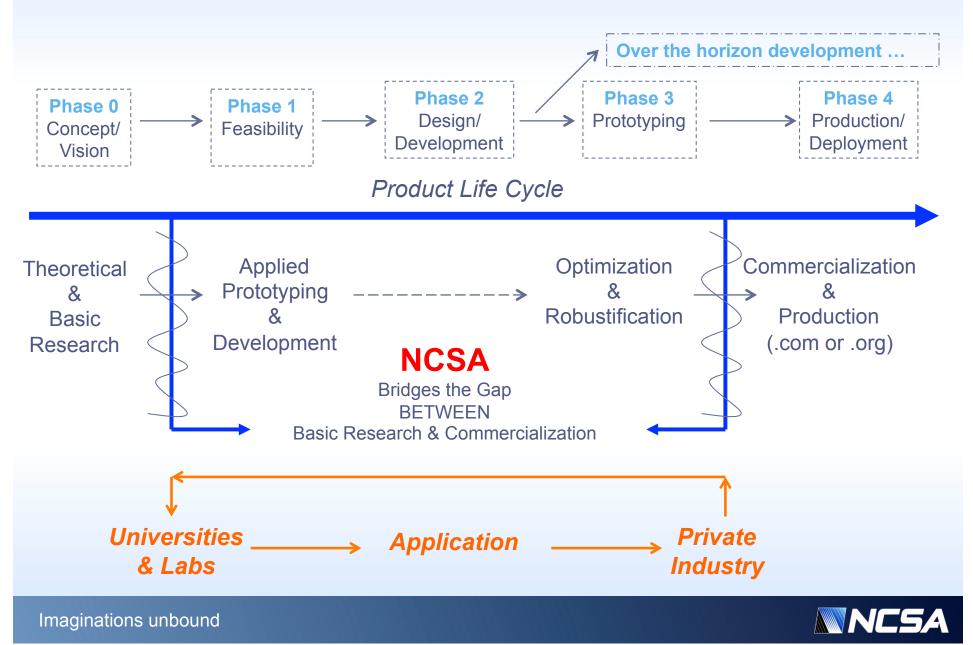
NCSA

HPC USER FORUM

Stuttgart Germany

October 2010


Merle Giles Private Sector Program & Economic Development mgiles@ncsa.illinois.edu

National Center for Supercomputing Applications University of Illinois at Urbana-Champaign

NCSA Bridges Basic Research and Commercialization with Application

Value Creation and Economic Development

 3D virtual prototyping at NCSA => Caterpillar's Global Simulation Center in Champaign

• Full-scale simulation of cell tower activity

Reduced reliance on wet labs thru computation

Cluster design and architecture

HPC-capable fast-network hard drives

• World's first Internet GUI interface

Prototyping Windows® HPC Operating System

Value Creation and Economic Development

Apache

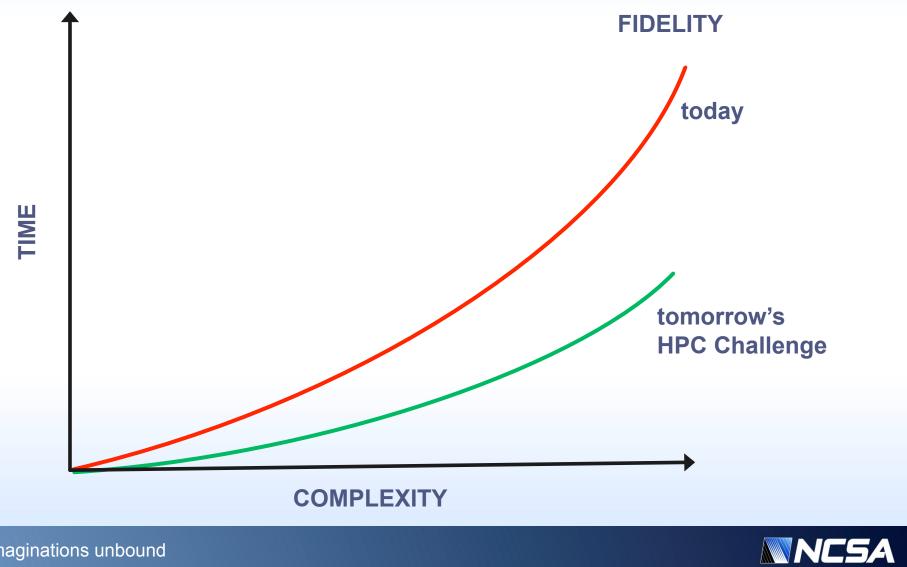
sustems

RiverGlass

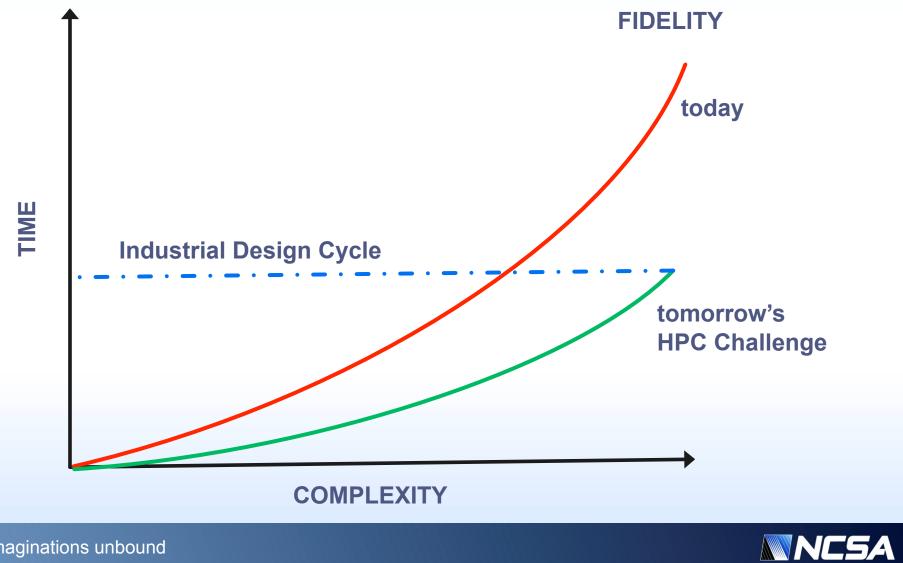
TOTAL \$\$

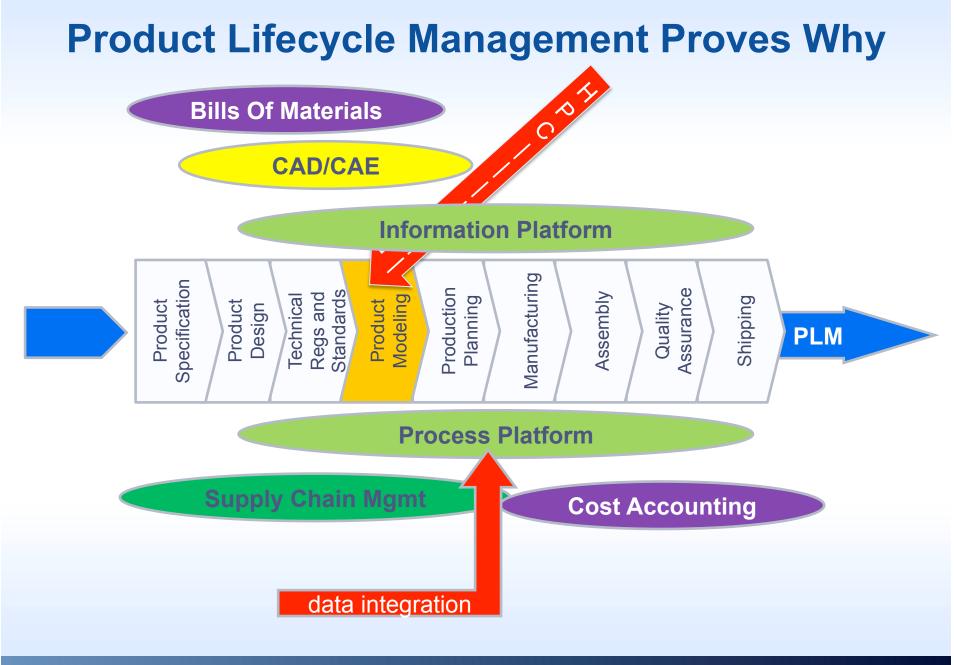
- The HDF Group (pdf-equivalent for data)
- Linux OS made standard for HPC
- Apache server software
- Telnet remote access
- R-systems hosts Wolfram Alpha
- Music data analytics at One Llama
- River Glass spinout recent Boeing buyout
 - \$1 Trillion per founder Larry Smarr

CURRENT PARTNERS



CLASSICAL HPC MISSION

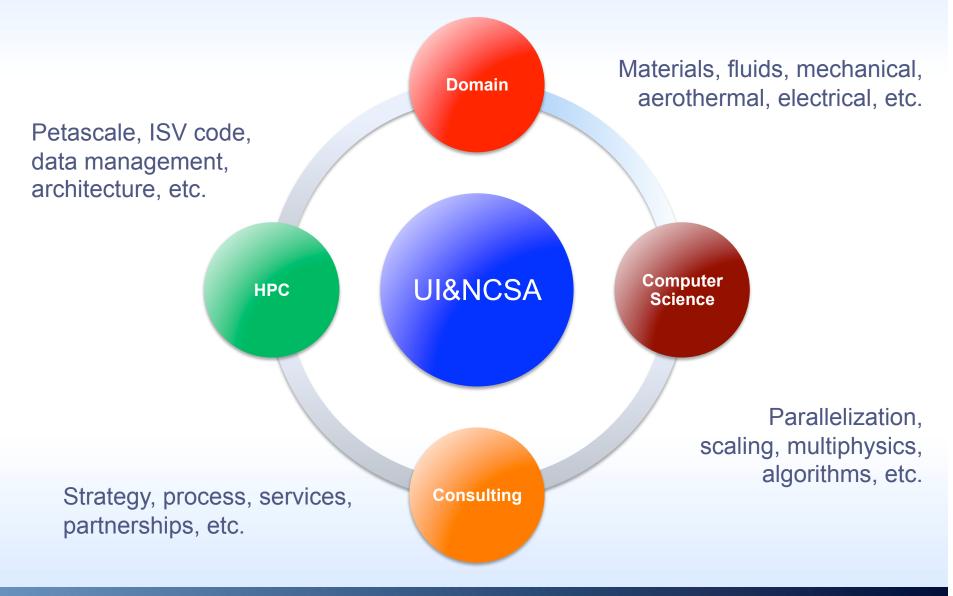

- Historically, HPC has focused on science *discovery*
- Economic value has also been achieved in HPC derivatives
- Industrial value keys on discovery and optimization
- Increasingly, industry brings world-class problems



Tomorrow's Industrial Challenge

Discovery is No Longer Sufficient

Forbes Magazine: Publisher Rich Karlgaard Digital Rules, September 13, 2010


Smart-aggregation rules: Some forms of content will always need human curating.

Dumb-aggregation rules: And some forms of content won't.

The trick is to figure out where algorithms beat humans, and vice versa.

Competitive Advantage needs Human Expertise

Headlines

- **GERMANY Trade & Invest** Partnership is the key to country's thriving R&D landscape.
- **IBM Smarter Planet** Thanks to pervasive instrumentation and global interconnection, we are now capturing data in unprecedented volume and variety.
- **IBM Smarter Planet** World's network traffic will soon total more than half a zettabyte.
- WSJ Steve Conway "There is growing recognition of the close link between supercomputing and scientific advancement as well as industrial competitiveness."
- Forbes Consumer technology is now ahead of most industrial technology.

NESA

EXTREME COMPUTING

National Center for Supercomputing Applications University of Illinois at Urbana-Champaign

New Performance Driver

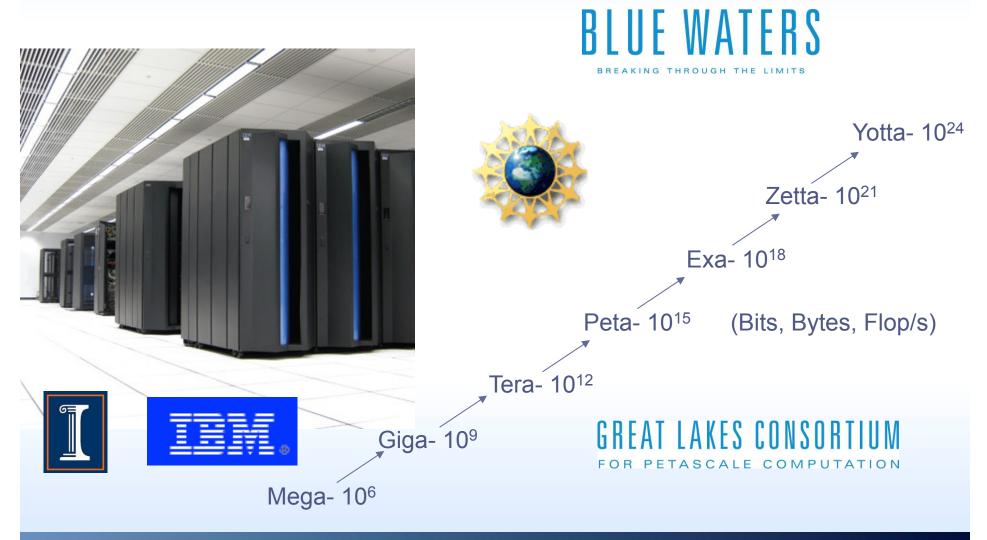
NCSA's Blue Waters is the first open-access system tasked to achieve ≥ 1 petaflop/s on *real* applications.

Guess What This Is ?

From 1956 . . .

Guess What This Is ?

From 1956 . . .


A hard disk drive

with 5 MB storage

Leading-Edge Collaboration

Blue Waters Expected to Beat 2008's TOP500[®] COMBINED!

NCSA

U.S. Leadership Computing Programs

- U.S. Department of Energy
 - Oak Ridge National Laboratory: Jaguar + Follow-on
 - Argonne National Laboratory: Intrepid + Follow-on
 - Lawrence Livermore National Lab: Dawn + Sequoia
- National Science Foundation
 - University of Illinois/NCSA: Blue Waters
- NASA
 - Ames Research Center: Pleiades

Petaflop/s Comparison

SYSTEM ATTRIBUTE	NCSA Abe	DOE Jaguar	NCSA Blue Waters
Vendor	Dell	Cray	IBM
Processor	Intel Xeon 5300	AMD 2435	IBM Power7
Peak Performance (Pf/s)	0.088	2.33	~10.0
Sustained Performance (Pf/s)	~0.005	??	≥1.03
# Cores/Chip	4	6	8
# Cores (total)	9,600	224,256	>300,000
Memory (Terabytes)	14.4	360	>1,200
Online Disk Storage (Terabytes)	100	10,000	>18,000
Archival Storage (Petabytes)	5	20	up to 500
Sustained Disk Transfer (TB/s)	na	.240	> 1.5

Machine Comparison

SYSTEM ATTRIBUTE	ASC Purple IBM	DOE Jaguar CRAY	Blue Waters IBM **1 Rack**	Blue Waters IBM Complete
Year Deployed	2005	2009	2011	2011
Processor	IBM P5	AMD	IBM P7	IBM P7
# Cores	12,000	224,256	3,072	300,000+
Peak Performance (Tf/s)	100	2,330	100	10,000+
Disk Storage (Terabytes)	2,000	7,000	153.5	18,000+
# Disk drives	10,000	??	384	40,000
Memory (Terabytes)	50	300	24.6	1,200
Cost	\$290M	??	??	\$208M

Integrated/Scalable System

Blue Waters will be the most powerful computer in the world for scientific research when it comes on line in 2011.

Blue Waters

~10 PF Peak ~1 PF sustained >300,000 cores ~1.2 PB of memory >18 PB of disk storage 500 PB of archival storage ≥100 Gbps connectivity

IH Server Node

8 QCM's (256 cores) 8 TF (*peak*) 1 TB memory 4 TB/s memory bw 8 Hub chips Power supplies PCIe slots

Fully water cooled

Blue Waters Building Block

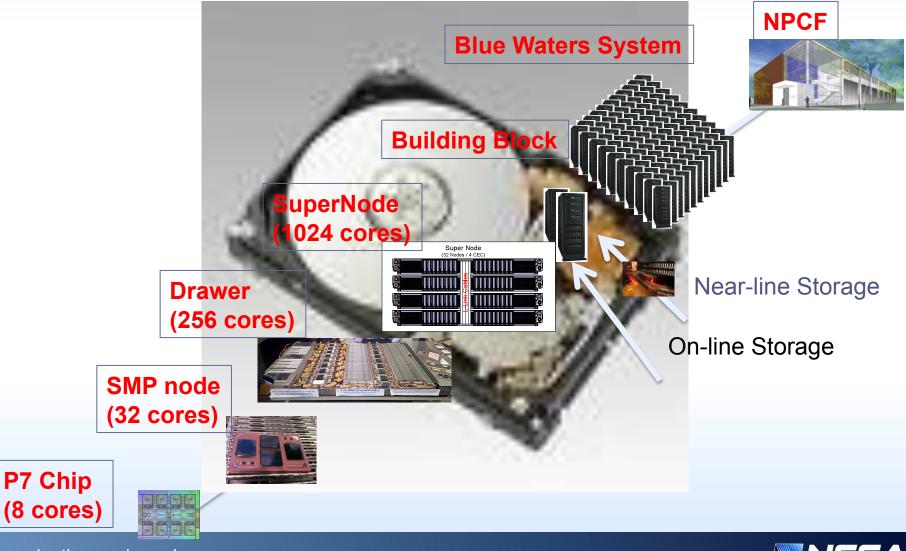
32 IH server nodes 256 TF (peak) 32 TB memory 128 TB/s memory bw 4 Storage systems (>500 TB) 10 Tape drive connections

Blue Waters is built from components that can be used to build other systems with a wide range of capabilities from servers to beyond Blue Waters.

Power7 Chip 8 cores, 32 threads L1, L2, L3 cache (32 MB) Up to 256 GF (peak) 128 Gb/s memory bw

Hub Chip 1.128 TB/s bw

4 Power7 chips


128 GB memory 512 GB/s memory bw

1 TF (peak)

Quad-chip Module

From Chip to Entire Integrated System

IBM P7IH Supernode = 128 CPUs/1024 cores

Data Center in a Rack

Rack ■990.6w x 1828.8d x 2108.2 ■39"w x 72"d x 83"h ■~2948kg (~6500lbs)

Data Center In a Rack

Compute Storage Switch 100% Cooling PDU Eliminated

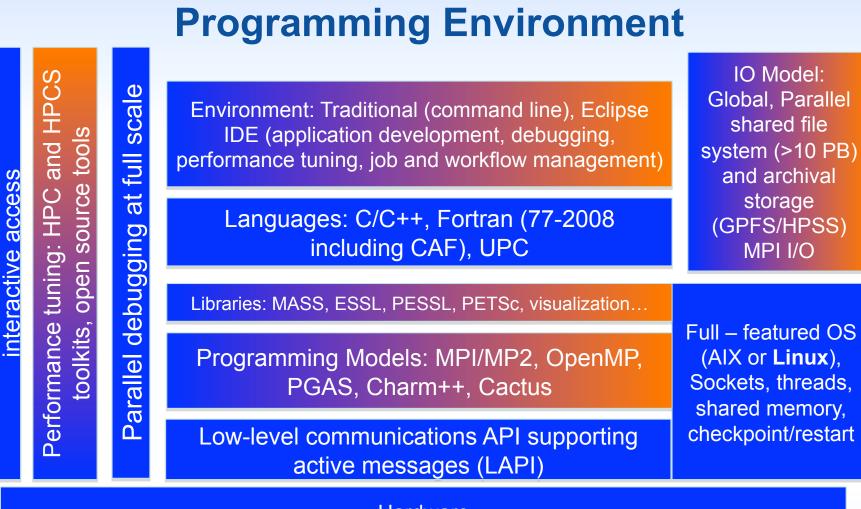
Input: 8 Water Lines, 4 Power Cords Out: ~100TFLOPs / 24.6TB / 153.5TB 192 PCI-e 16x / 12 PCI-e 8x

BPA 200 to 480Vac 370 to 575Vdc Redundant Power Direct Site Power Feed PDU Elimination

Storage Unit •4U •0-6 / Rack •Up To 384 SFF DASD/Unit •File System

<u>CECs</u>

2U
1-12 CECs/Rack
256 Cores
128 SN DIMM Slots / CEC
8,16, (32) GB DIMMs
17 PCI-e Slots
Imbedded Switch
Redundant DCA
NW Fabric
Up to: 3072 cores, 24.6TB

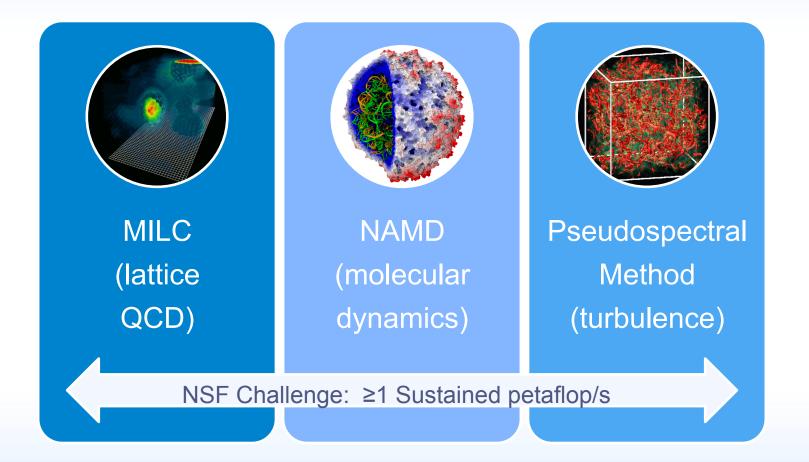

(49.2TB)

WCU Facility Water Input 100% Heat to Water Redundant Cooling CRAH Eliminated

Diverse Large Scale Computational Science

areas	physics,	linear algebra	linear			Structured Grids (S-Grids)	Unstructured Grids (U-Grids)	Data Intensive	
Nanoscience		×	<u> </u>	X	X	X			
Chemistry	Х	Х	Х	Х	Х				
Fusion	Х	Х	Х			X	Х	Х	
Climate	Х		Х	Х		X	Х	Х	
Combustion	Х		Х			Х	Х	Х	
Astrophysics	Х	Х	Х	Х	Х	Х	Х	Х	
Biology	Х	Х					Х	Х	
Nuclear		Х	X		X			Х	
System Balance Implications		Speed	High Performance Memory	High Interconnect Bisection bandwidth	High Performance Memory	High Speed CPU, High Flop/s rate	Irregular Data and Control Flow	Higii Storage and Network bandwidth	

Hardware


Multicore POWER7 processor with Simultaneous MultiThreading (SMT) and Vector MultiMedia Extensions (VSX) Private L1, L2 cache per core, shared L3 cache per chip High-Performance, low-latency interconnect supporting RDMA

Imaginations unbound

Resource manager: Batch and

Blue Waters Benchmark Codes

Photos courtesy of NERSC, UIUC, IBM

Path to Petascale

USERS

- Aerospace
- Automotive
- Bio/Chemical
- Oil & Gas
- Pharma
- Energy
- Finance
- DOE/DoD

DEVELOPERS

- Proprietary 50%
- Commercial 30%
- Open Source 20%

- Corporate
- Technical
- University
- HPC experts
- Domain experts
 - Federal labs

NCSA

2 Paths to Blue Waters

NSF Allocation

- Allocation 80%
- Peer Review
- Faculty, Labs
- Industry
- Tech Support
- FREE cycles

- Allocation 7% PSP
 - Proprietary work
 - Supply Chain
 - Com'l licensing
 - Tech Support

National Petascale Computing Fac \$72.5M, 25MW, LEED Gold+ Military-grade security Non-classified 88,000 ft²

THANK YOU!

http://industry.ncsa.illinois.edu

www.ncsa.illinois.edu/BlueWaters

National Center for Supercomputing Applications University of Illinois at Urbana-Champaign

