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High Performance Computing
This is what it’s good for  .  .  .

BCA Technology | Enabling Technology and Research 

g

The 787 8 and 747 8 First FlightsThe 787-8 and 747-8 First Flights
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CFD Contributions to 787
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CFD for Full Flight Envelope – High Speed

BCA Technology | Enabling Technology and Research 

Why is this Important?
• Reducing Design Cycle Time while increasing data fidelity 

in the early development phases of a new airplane 
program is critical to competitiveness

• Creating flight predicted S&C and Loads aero data is very 
time consuming and requires much wind tunnel testing

What are the Technical Challenges?

time consuming and requires much wind tunnel testing.

• Accurate CFD prediction of Loads and S&C characteristics at 
flight conditions with significant flow separation

Developing Navier Stokes CFD processes for accuracy
What are we doing?

flight conditions with significant flow separation.
• Timely, robust, and repeatable modeling of configurations with 

control deflections including spoilers, vortex generators, etc. 787-9 
in yaw

• Developing Navier-Stokes CFD processes for accuracy, 
reliability, and robustness for use by product 
development engineers for engineering applications.

• Validating/Expanding CFD use in Loads and S&C 
disciplines
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p
• Integrating wind tunnel and CFD use to reduce cycle 

time, cost.
787-8 at high Mach 
with deflected 
outboard spoilers



CFD at the Edges of the Flight Envelope
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What are the Challenges? Cp comparison at 
approximately 2 5g at Mach diveg

• CFD Issues
– Large regions of separated flow
– Turbulence models
– Need URANS or DES?

approximately 2.5g at Mach dive

• Testing Issues
– Close to Mach One
– Model aeroelastics
– Representative of “Free Air”?

Separated 
These CFL3D 
RANS four-engine 
transport results flowtransport results 
are typical of CFD 
issues at the edge 
of the envelope

Copyright © 2010 Boeing. All rights reserved. Ball SC China 2010.ppt | 5



High-Lift CFD
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Why is this Important?Why is this Important?
• Optimization of high-lift configurations
• Study of simplified/revolutionary high-lift concepts
• Study of large number of geometries, device 

positions
• Understanding of high-lift flow physics
• Ability to predict maximum lift
• Study of flow-control concepts
• Reduction of wind-tunnel tests
• Eliminate wind-tunnel effects from test dataEliminate wind tunnel effects from test data
• Extend test data to full scale Reynolds numbers

What are the Technical Challenges?
• Understanding highly complex flow phenomena
• Consistent process for prediction of CLmax• Consistent process for prediction of CLmax
• CFD Challenges

– Lack of robustness 
– Grid resolution requirements are unknown
– Turbulence modeling effects are unknown
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– Unsteady flow analyses are required but unavailable



2D High-Lift CFD
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What Are We Doing?What Are We Doing?
• Developed Automated Navier-Stokes Two Dimensional Setup Process, ANTS
• Rapid Navier-Stokes analysis of multiple 2-D high-lift wing sections
• Produce accurate and consistent prediction of performance and flow-physics data

CL

α
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3D High-Lift
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What Are We Doing?

Pressure coefficients

R l ft

Surface 
streamlines

• Developed automated Navier-Stokes 3D system analysis process flow with one day turn around

Raw lofts

P iti d t Surface
Volume 

gridPositioned geometry Surface 
grid

grid
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CFD in Flutter Predictions
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Why is this Important?Why is this Important?
• Reduce potential flutter risks in new airplane programs
• Enabler to look into non-linear aeroelastic effects earlier in the design cycle
• Minimize impact of design modifications necessary to eliminate potential flutter risks
• Avoid costly design “fixes” to mature airplane design
• Enabler to generate databases for reducing wind-tunnel testing time, cycle time and cost

What are the Technical Challenges?
• Highly complex unsteady flow phenomena: coupling of unsteady flow with unsteady 

structural dynamics
• Existing high speed flutter experimental data are very limited
• High speed flutter tests are costly with long design time and limitations due to wind tunnel, 

model integrity, subjective engineering calls during tests, etc. 
• Computational simulations challenges include: long unsteady cycle time, limited validated 

methods, mesh deformation robustness for complex geometry, as well as typical steady 
computational challenges.
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computational challenges. 



CFD in Flutter Predictions
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What Are We Doingg
• Create, correlate, and validate both steady and unsteady aeroelastic processes. 
• Assure the processes (TRANAIR-based and CFL3D-based) are robust and repeatable.  
• Validate process components for each component to assure accurate results: 
• Initially validate unsteady code for ‘simple’ wing and isolated nacelle oscillations 
• Apply methodology to compute wind tunnel static aeroelastic deformations and high speed flutter

Wind Tunnel Model

• Apply methodology to compute wind-tunnel static aeroelastic deformations and high speed flutter

Computational Model

Analysis of Flutter Conditions
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CFD in Flutter Predictions
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Unsteady Control Surface Modeling
with CFL3D

Low Subsonic Speed Transonic Speed
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Stability & Control Application of CFD
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Why is this Important?
• Aircraft weight/performance impacts
• Actuator sizing & system requirements
• Improved simulation fidelity

R d d WT t ti• Reduced WT testing

Wh t th T h i l Ch ll ?What are the Technical Challenges?
• Highly complex geometries
• Increased reliance on augmentation
• Multi-functional controls

Hi h fid lit di ti

Lateral/Directional T&I 
and Wall Interference

• Higher fidelity aero predictions 
required

• Unsteady flow regimes
• Large matrix of data required

A t diti ff t t t
Spoiler 

Effectiveness 
M d li
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• Asymmetry conditions effects on test 
data and CFD analyses

Modeling



Stability & Control Application of CFD
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What Are We Doing R dd Pl f /D t il dWhat Are We Doing
• Control surface design

– Sizing trades
– Control loads (hinge moments)
– Design details

C fi ti t d t di

Rudder Planform/Detailed 
Design Trades

• Configuration trade studies

• Wind tunnel-to-flight corrections
– Tare & Interference
– Wall effects

R ld N b ff t– Reynolds Number effects

• Aerodynamic database development
– Aeroelastic corrections
– Dynamic derivatives

S l t WT– Supplement WT

• Full Spectrum of Codes
– A502
– Tranair
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– CFL3D
– CFD++ (3D & 2D) Flaperon/Cove 

Detail Design



Propulsion Aerodynamics – Thrust Reverser
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Stopping Distance Variation w/Runway 

Why is this Important?
• Thrust Reverser (T/R) provides additional deceleration after 

landing. 
• The T/R is essential to meet landing and take off field length 

Condition (Example)
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requirements, particularly under icy runway conditions. 

What are the Technical Challenges?
• Provide required reverse thrust while

0

100

200

icy wet dry

%
 o

f D
ry

• Provide required reverse thrust while 
considering limits imposed by 

– Impingement on A/C surfaces
– Re-ingestion by A/C engine
– Rudder blanking

Spoilers+Brakes Spoilers+Brakes+Reversers

Delta Lift & Drag Rudder Blanking   
– Nacelle integration
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Propulsion Aerodynamics – Thrust Reverser
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What Are We Doing?What Are We Doing?
• CFD process developed within Boeing utilized ANSYS/ICEM and CFD++ solver in support of T/R 

external efflux pattern development and related analysis of re-ingestion, impingement, and 
controllability concerns.

Reverser/Airframe CompatibilityReverser/Airframe Compatibility
– Installed Analysis

Leading-Edge Integration
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Nacelle Thermal Analysis
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Why is this Important
• Minimizes schedule risk
• Reduce flight test (cost and schedule savings)Reduce flight test (cost and schedule savings)
• Optimize fuel burn (most efficient use of cooling air)
• Provide basis for combustor case burnthrough certification

What are the Technical Challenges
• Very complex geometry

C l b d diti• Complex boundary conditions
• Varying flow regimes (low speed to highly under-expanded jets)
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Nacelle Thermal Analysis
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What Are We Doingg
• Engine Bay CFD Analysis (Primarily done by Engine companies)
• Coupled fluid/thermal analysis of nacelle structure

•Combustor case burnthrough
•Auxiliary exhaust thermal mixingy g

FWDFWD
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Computational Ice Shape Generation
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Why is this Important?
• Airframe ice shapes corresponding to critical flight conditions were needed for 787 low 

speed wind tunnel testing to measure the impact on aircraft handling characteristics p g p g
and maximum lift.

• LEWICE3D, a code developed by NASA, greatly reduced the need to 
interpolate/extrapolate ice shapes to generate wind tunnel model parts.

• Using LEWICE3D drastically reduced the time needed to generate ice shapes.

What are the Technical Challenges?
• LEWICE3D calculates water droplet trajectories through a converged CFD flow-field 

to generate a 3D droplet collection efficiency distribution on the airframe This is ato generate a 3D droplet collection efficiency distribution on the airframe. This is a 
large computation, which had to be parallelized in order to be feasible.

• Finding enough experimental swept wing ice shape data to further refine the ice 
shape generation model and methodology is problematic.
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Computational Ice Shape Generation
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What Are We Doing?g
• Flight conditions considered critical for airframe icing were selected.
• Navier-Stokes solvers CFD++ or OVERFLOW were run with these conditions to 

generate a flow-field for input into LEWICE3D.
• LEWICE3D generated a collection efficiency and ice shape cuts.
• Ice shape cuts were used to produce lofts for stereo lithography production into• Ice shape cuts were used to produce lofts for stereo lithography production into 

wind tunnel model parts.
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Water Droplet Collection Efficiency Ice Shape Cuts on Wing Leading Edge



Closing Thoughts
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• CFD exists to enable new solutions to problems, reduce airplane 
development cost, and reduce time to market 

• CFD can allow you to safely explore areas of the flight regime without 
putting a pilot at risk

• CFD can allow you to analyze conditions for which physical 
simulation is either very expensive or not possible, such as 
h i l i t d f ll fli ht R ld bhypersonic propulsion systems and full flight Reynolds number 
testing

• Accuracy, robustness and timeliness are the keys to acceptance and 
use in an industrial environmentuse in an industrial environment

• Impediments: applications that do not scale well (to 1000’s of 
processors) – this is science, resources to run 1000s of flight 
conditions on 100’s of processors – this is engineering & business
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conditions on 100 s of processors this is engineering & business
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