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• Shipboard operations are among the most challenging 
of any piloting task for fixed or rotary wing aircraft

Ship MotionLow visibility &
poor visual cues

Restricted 
landing area

Background
Shipboard Operations

Airwake 
turbulence

Ship airwake primary driver 
of WOD envelope 

operational capability



AIR 4.3.2.1 5

Recent Airwake Related Issues
V-22/LHA: 

• Lateral Instability Resulting in PIO Experience During   
Sea Trials 

• Uncommanded Roll on Deck Due to Upwind Aircraft
• Complex Ship Airwake Characteristics Determined to 

be Contributing Factors in Both Incidents
• Wind tunnel test(s) at NASA Ames 7x10        
• High and moderate fidelity CFD analysis

British AOR:  
• Ship Designed and Built with Two Landing Spots   

and Hangar to Accommodate Two Helicopters
• DI Testing Revealed Forward Landing Area Was 

Unusable for Flight Operations Due To Turbulent 
Airflow
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Recent Airwake Related Issues
OH-58/LHA: 

• Prevailing airwake stream caused wake from upwind 
aircraft to impact tail rotor of parked aircraft   

• Airwake driving factor in incident 
• JSHIP program used SAFEDI airwake analysis 

to determine cause.        
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Go to the ship and fly it
Aircraft T&EAircraft T&E

SimulationSimulation Airwake is Turbulent “Noise”
WOD and ship configuration don’t matter!
Not realistic enough for training/envelope eval.

DesignDesign Airwake not a design parameter
Flight ops/ship maneuverability
restricted by airwake characteristics

Time-accurate Airwake Model generated by CFD 
Desk-top Airwake Evaluation Capability

Airwake Evaluation Capability for all 
Ship/Aircraft combinations

Background
Need for High Fidelity Airwake Models

High Fidelity Real-time Simulation for 
initial evaluation/pilot training/expansion
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Background 
JSHIP Program

• Joint Shipboard Helicopter Integration Process
– OSD funded
– Increase interoperability of joint shipboard helicopter operations
– Facilitate interface of Army and Air Force helicopters with Navy ships
– Dynamic Interface Modeling and Simulation System

• Develop flight envelopes using modeling and simulation
• Enhance training of shipboard landing environment
• NAVAIR develop and provided LHA airwake data used in 

piloted simulations
• Ship airwake primary driver of 

WOD envelope

SAFEDI
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Develop CFD Airwake Technology to Enhance Ship 
Related Air Test & Evaluation and Ship Design 

Through Analysis & Simulation

SAFEDI 
Goals

Ship Aircraft Airwake Analysis for 
Enhanced Dynamic Interface
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1) Accurate predictions of 
ship airwake

2) Analytical tool for offline 
airwake evaluation

3) Manned flight simulation
with validated airwakes

SAFEDI Products
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Edge 
vorticies

Separation 
off bow

Periodic shedding
from bow (burble)

Deck spot 7

Effect of island

LHA with opaque iso-surfaces 
of vorticity

Baseline Calculations
• Fully Viscous
• Unsteady, Time Accurate 
• Flat Ocean
• With & w/o Atm. Boundary Layer
• With and w/o Ship Motion

SAFEDI 
Development of Airwake Databases
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SAFEDI 
Development of Airwake Databases
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Edge
vortices

Shedding 
off island30º WOD

0º WOD

Flow character changes dramatically with 
changing wind direction

SAFEDI 
Wind Azimuth Variations
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CFD Validation
Wind Tunnel & At-sea Tests

• Wind tunnel data 
– Controllable environment (incoming 

wind)
– All areas around ship accessible for 

measurement
– Stereolithography can provide 

highly detailed models
– Reynolds number & scaling issues

• Full-scale data
– Collect “real world” data (ultrasonic 

anemometers)
– Environment unpredictable & difficult to 

measure
– Currently limited to measuring 0-20ft 

above deck
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CFD Validation
NAVAIR Pax River Assets: Sub-scale
The Naval Aerodynamic Test Facility
Subsonic Wind Tunnel at Patuxent River, MD

Satisfying Navy needs since 1994

DDG-81

DD 963
Ship Motion

Ship Antenna Mast

Ultrasonic 
anemometer 
calibration

Airwake
control 
device 
testing
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• Past validation efforts
– CVN (73 & 76), LHA, LHD

• Current Effort
– Destroyer (DDG)

– Preparation of H-60/DDG coupled 
calculations

– Dominant flow features significantly 
different from flat deck ships

Validation Efforts
Ship Airwake Modeling

Deckhouse 
wake

Shear flow 
region

Separated, 
recirculating
flow

Deckhouse 
wake

Shear flow 
region

Separated, 
recirculating
flow
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• Compared 3 wind angles
– 000°, 350°, 340°
– 75 fps

• 3-component velocity data
– Steady and unsteady

• Data plane at flight deck 
centerline

Validation Efforts
Wind Tunnel Experiment
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• 000º wind angle
• Time-averaged velocity 

magnitude
– v,w velocity vectors

• Good agreement 
between CFD and 
WT

Validation Efforts
CFD Comparisons with WT

Wind Tunnel

CFD

V/V∞

V∞
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• 000º wind angle
• Vertical velocity 

component
– Time-averaged

• Good agreement 
between CFD and 
WT

Validation Efforts
CFD Comparisons with WT

Wind Tunnel

CFD
V∞

w/V∞
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• 350º wind angle
• Time-averaged velocity 

magnitude
– v,w velocity vectors

• Good agreement 
between CFD and 
WT

Validation Efforts
CFD Comparisons with WT

Wind Tunnel

CFD

V∞

V/V∞
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• 350º wind angle
• Vertical velocity 

component
– Time-averaged

• Good agreement 
between CFD and 
WT

Validation Efforts
CFD Comparisons with WT

Wind Tunnel

CFD

V∞

w/V∞
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• 340º wind angle
• Time-averaged velocity 

magnitude
– v,w velocity vectors

• Good agreement 
between CFD and 
WT

Validation Efforts
CFD Comparisons with WT

Wind Tunnel

CFD

V∞

V/V∞
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• 340º wind angle
• Vertical velocity 

component
– Time-averaged

• Good agreement 
between CFD and 
WT

Validation Efforts
CFD Comparisons with WT

Wind Tunnel

CFD

V∞

w/V∞
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• CFD Airwake predictions at 5 WOD azimuths
• Offline & piloted simulations at Pax MFS

– Flight simulation data will be compared to flight test data 
for validation

• CFD airwake data validated against Pax wind tunnel 
data

CVN-76

DDG 81 
CFD, Autopilot & Piloted Simulations

DDG-81
Wind Tunnel Model

• Animation of CFD
• Velocity plane through hover location
• Surface oil flow 
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Airwake Control 
Control Devices on DDG 81 (NATO AVT-102)

• Flow control devices on DDG-81

CVG
Forward facing
Ramp/wedge

Balloon
Flap

Blowing
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CFD Validation
NAVAIR Pax River Assets: Full Scale

• Ultrasonic Anemometers 
– High frequency, 3 component 

velocity data
– 17 probes
– Boom rig, pole stand mountings
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Mean Horizontal Wind Speed
Spot 2 and 7, All events, All anemometers
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Power Spectral Density
Spot 7, Event 4, Anemometer 3
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Power Spectral Density 
showing Band 0.2Hz to 2.0Hz
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SAFEDI Products
1) Accurate predictions of 

ship airwake

2) Analytical tool for offline 
airwake evaluation

3) Manned flight simulation
with validated airwakes
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PC-Based Airwake Evaluation
• “Fly” Aircraft models through CFD airwakes

– F18, EA6B, UH60

• Examine hundreds of approaches in non-real 
time mode

• Provide information on airwake trouble spots
– Aircraft control surface

activity
– ACLS activity

• Validation problematic
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SAFEDI Products
1) Accurate predictions of 

ship airwake

2) Analytical tool for offline 
airwake evaluation

3) Manned flight simulation
with validated airwakes
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• Rapid integration in manned flight environment
– NAVAIR flight dynamics lab
– Easily transitioned to high fidelity MFS
– Retains analysis of PC-based tool

Manned Flight Simulation 

F/A-18 C/D High Fidelity Cockpit
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CVN Calculations
CFD Prediction: ‘Full Scale’ CVN 73

• Scaled wind 
tunnel model

• WOD: 015/30kt

• Scaled wind 
tunnel model

• WOD: 015/30kt

• Predict airwake for CVNs
– Aerodynamic effect of deck and   

island geometry
– Fixed wing aero performance and  HQ

investigations
– Validation for 

CVN-21
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CVN Calculations
CVN 76 Animation
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Interoperability 
F-14 / Catapult Wake for H-60

• Concerned about jet influence 
on helos operating on Elevator 3

• Test article not available for 
“real life” testing 

• CFD used as tool in flight 
clearance process

• The Abraham Lincoln Carrier 
Strike Group currently operating 
providing humanitarian aid to 
tsunami victims

• Helped out Hawkeye/F-
18 air-to-air refueling 
team

• Argument was made 
that E 2 can taxi behind 
F-18 on cat so should 
not have problem flying 
behind it

• Demonstrated that JBD 
was doing its job
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• Developed 6 dof ship motion CFD capability
• Ship motion wind tunnel test conducted Jun/Jul 04

– DD 963, 1 dof (pitch), Pax River (4’ x 3’)
• LHA high sea state CFD test case

Ship Motion
LHA and DD 963

DD 963
Ship Motion Wind Tunnel Test
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Ship Motion
DD 963 Static Pitch Cases

• Static pitch: +2°, 0°, -2°
• DD 963
• Full scale (hull different than WT test article)
• Also doing a motion case

0°

+2°

Vorticity at an 
instant in time

Approximate center 
of rotation



AIR 4.3.2.1 41

• CFD results using sub-grid scale bc’s

Antenna Mast Airwake
Novel Modeling Techniques

Validated against 
wind tunnel data 
taken in Pax
Facility
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Background
SAFE-DI Tool

Airwake Turbulence
Data

Aircraft Flight 
Simulation Model

• Presence of 
aircraft does not
affect airwake

• Airwake data 
perturbs aircraft 
simulation 
model
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Fully Coupled CFD Analysis 
V-22 Dynamic Approach to LHA

• Approach
– Cobalt
– Unstructured/overset
– Actuator disk with blade 

tracking
• Fixed thrust target

– Fixed approach path
– WOD conditions simulate 

actual test event
• Results

– Simulation completed 
through entire approach

• Decent to 10 ft above deck
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Fully Coupled CFD Analysis 
V-22 Dynamic Approach to LHA

• Results
– Hole cutting 

technique 
proved 
robust even 
near ship 
deck

– Outwash 
from tandem 
rotors affect 
large portion 
of the flight 
deck
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• Joint NRC/NAVAIR test
– Bell 412 hovering in front of 

land-based hangar
• Collect time history outwash 

data with 7 ultrasonic 
anemometers

– 3 freestream anemometers

Validation Efforts
Coupled Airwake Modeling

Hangar

GRID 1H
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• CFD Approach
– Modeled hangar, aircraft 

fuselage, main and tail rotors 
(actuator disks)

– Performed grid density study
– Performed limited turbulence 

model study
– Atmospheric boundary layer 

effect currently under 
investigation

Validation Efforts
Coupled Airwake Modeling

533° R (73° F)Temperature

303°Sideslip

M=.00755 (~7.4 knots)Wind Speed

10 ftHover Altitude (Skids AGL) * Significant portions of this work 
were conducted by Air Force Cadet 
Daniel Rowland through the 
HPCMO summer internship 
program. Lt. Rowland was 
mentored by Maj. Jim Forsythe 
during his internship.
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• Results
– Generally favorable; CFD tends to over predict outwash velocity

Validation Efforts
Coupled Airwake Modeling

 BaselineBaseline

CFD
EXP
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• Turbulence model study

Validation Efforts
Coupled Airwake Modeling

 

Baseline

Baseline with SA

• Comparisons with 
experimental data 
generally good

• SA compares 
better for port side 
anemometers

–Effect of prevailing 
winds modeled 
more accurately

• The baseline case 
compares better 
on starboard side 
anemometers

CFD
EXP
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The Way Ahead
• Concentrating on coupled ship/aircraft aero

– Rotorcraft
– Fixed-wing

• Looking at novel approaches to bring 
coupling effects into real-time simulations
– Airwake “warping”

• Continuing to build airwake databases
– LHA, LHD, CVN, CVN-21, T-AKE, DDG, DDX, LCS, LHA(R)

• Continuing to improve SAFEDI Tool
– Examining airwake integration methods
– Human pilot modeling
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• Airwake Models
–LHA, LHD, LHA(R)
–CVN-73, CVN-76, CVN-21
–DDG-81, DD(X)

• Airwake Models
–LHA, LHD, LHA(R)
–CVN-73, CVN-76, CVN-21
–DDG-81, DD(X) • Validation

–Full scale data
• LHA, CVN-76

–Wind tunnel data
• LHA, CVN-73 & 76, DDG-81
• Antenna mast, ship motion

• Validation
–Full scale data

• LHA, CVN-76
–Wind tunnel data

• LHA, CVN-73 & 76, DDG-81
• Antenna mast, ship motion

• Fidelity Enhancement
–Time step & grid dependency
–Atmospheric boundary layer
–Geometric fidelity

• Sub-grid Scale BC
–Ship motion effect

• Fidelity Enhancement
–Time step & grid dependency
–Atmospheric boundary layer
–Geometric fidelity

• Sub-grid Scale BC
–Ship motion effect • Offline airwake evaluation 

tool
–H-60 on DD(X)
–H-60 on LHA & LHA(R)
–F/A-18 on CVN
–V-22 on LHA

• Offline airwake evaluation 
tool

–H-60 on DD(X)
–H-60 on LHA & LHA(R)
–F/A-18 on CVN
–V-22 on LHA

• Manned simulation
–H-60 on LHA (JSHIP)
–H-60 on DDG (FY04)
–EA-6B on CVN
–F/A-18 on CVN

• Manned simulation
–H-60 on LHA (JSHIP)
–H-60 on DDG (FY04)
–EA-6B on CVN
–F/A-18 on CVN

Summary
Airwake Accomplishments

• 8 peer reviewed 
publications

• 2 Grand Challenge Projects

• 8 peer reviewed 
publications

• 2 Grand Challenge Projects
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Questions?
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