NAVAIR Airwake Modeling & More!

Ms. Susan Polsky

AIR 4.3.2.1 301-342-8575 susan.polsky@navy.mil

HPC User Group Forum 15 April 2008

- Background
 - Why is airwake important?
 - JSHIP
- SAFEDI
 - Goal
 - Products
 - Airwake Predictions & Validation
- Highlights
- Way Ahead

- Background
 - Why is airwake important?
 - JSHIP
- SAFEDI
 - Goal
 - Products
 - Airwake Predictions & Validation
- Highlights
- Way Ahead

Background

Shipboard Operations

 Shipboard operations are among the most challenging of any piloting task for fixed or rotary wing aircraft

Recent Airwake Related Issues

V-22/LHA:

- Lateral Instability Resulting in PIO Experience During Sea Trials
- Uncommanded Roll on Deck Due to Upwind Aircraft
- Complex Ship Airwake Characteristics Determined to be Contributing Factors in Both Incidents
 - Wind tunnel test(s) at NASA Ames 7x10
 - High and moderate fidelity CFD analysis

British AOR:

- Ship Designed and Built with Two Landing Spots and Hangar to Accommodate Two Helicopters
- DI Testing Revealed Forward Landing Area Was <u>Unusable</u> for Flight Operations Due To Turbulent Airflow

Recent Airwake Related Issues

OH-58/LHA:

- Prevailing airwake stream caused wake from upwind aircraft to impact tail rotor of parked aircraft
- Airwake driving factor in incident
 - JSHIP program used SAFEDI airwake analysis to determine cause.

Background

Need for High Fidelity Airwake Models

Background

• Joint Shipboard Helicopter Integration Process

- OSD funded
- Increase interoperability of joint shipboard helicopter operations
- Facilitate interface of Army and Air Force helicopters with Navy ships
- Dynamic Interface Modeling and Simulation System
 - Develop flight envelopes using modeling and simulation
 - Enhance training of shipboard landing environment
 - NAVAIR develop and provided LHA airwake data used in piloted simulations
 - Ship airwake primary driver of WOD envelope

NAV

- Background
 - Why is airwake important?
 - JSHIP
- SAFEDI
 - Goal
 - Products
 - Airwake Predictions & Validation
- Highlights
- Way Ahead

Goals

Ship Aircraft Airwake Analysis for Enhanced Dynamic Interface

Develop CFD Airwake Technology to Enhance Ship Related Air Test & Evaluation and Ship Design Through Analysis & Simulation

SAFEDI Products

1) Accurate predictions of ship airwake

2) Analytical tool for offline airwake evaluation

3) Manned flight simulation with validated airwakes

SAFEDI

Development of Airwake Databases

SAFEDI

Development of Airwake Databases

SAFEDI

Wind Azimuth Variations

CFD Validation

Wind Tunnel & At-sea Tests

Wind tunnel data

- Controllable environment (incoming wind)
- All areas around ship accessible for measurement
- Stereolithography can provide highly detailed models
- Reynolds number & scaling issues

• Full-scale data

- Collect "real world" data (ultrasonic anemometers)
- Environment unpredictable & difficult to measure
- Currently limited to measuring 0-20ft above deck

CFD Validation

NAVAIR Pax River Assets: Sub-scale

The Naval Aerodynamic Test Facility Subsonic Wind Tunnel at Patuxent River, MD

Ship Airwake Modeling

- Past validation efforts
 - CVN (73 & 76), LHA, LHD
- Current Effort
 - Destroyer (DDG)
 - Preparation of H-60/DDG coupled calculations
 - Dominant flow features significantly different from flat deck ships

Wind Tunnel Experiment

 Compared 3 wind angles V - 000°, 350°, 340° - 75 fps 3-component velocity data - Steady and unsteady Data plane at flight deck centerline 6.0 /ertical Location (inch) 5.0 V 4.0 3.0 Hanger height 2.0 Flight deck at 1.0 longitudinal centerline 0.0 Waterline -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 -5.0

Spanwise Location (inch)

CFD Comparisons with WT

- 000° wind angle
- Time-averaged velocity magnitude
 - v,w velocity vectors
- Good agreement between CFD and WT

CFD Comparisons with WT

- 000° wind angle
- Vertical velocity component
 - Time-averaged
- Good agreement between CFD and WT

CFD Comparisons with WT

- 350° wind angle
- Time-averaged velocity magnitude
 - v,w velocity vectors
- Good agreement between CFD and WT

y[in]

CFD Comparisons with WT

- 350° wind angle
- Vertical velocity component
 - Time-averaged
- Good agreement between CFD and WT

CFD Comparisons with WT

- 340° wind angle
- Time-averaged velocity magnitude
 - v,w velocity vectors
- Good agreement between CFD and WT

CFD Comparisons with WT

- 340° wind angle
- Vertical velocity component
 - Time-averaged
- Good agreement between CFD and WT

 V_{∞}

DDG 81

CFD, Autopilot & Piloted Simulations

- CFD Airwake predictions at 5 WOD azimuths
- Offline & piloted simulations at Pax MFS
 - Flight simulation data will be compared to flight test data for validation
- CFD airwake data validated against Pax wind tunnel data

Animation of CFD

- Velocity plane through hover location
- Surface oil flow

Airwake Control

Control Devices on DDG 81 (NATO AVT-102)

• Flow control devices on DDG-81

CFD Validation

NAVAIR Pax River Assets: Full Scale

• Ultrasonic Anemometers

- High frequency, 3 component velocity data
- 17 probes
- Boom rig, pole stand mountings

NAV

Comparison with Full Scale Data

Power Spectral Density

Spot 7, Event 4, Anemometer 3

Power Spectral Density showing Band 0.2Hz to 2.0Hz

SAFEDI Products

1) Accurate predictions of ship airwake

2) Analytical tool for offline airwake evaluation

I MARK

3) Manned flight simulation with validated airwakes

PC-Based Airwake Evaluation

- "Fly" Aircraft models through CFD airwakes – F18, EA6B, UH60
- Examine hundreds of approaches in non-real time mode
- Provide information on airwake trouble spots
 - Aircraft control surface activity
 - ACLS activity
- Validation problematic

SAFEDI Products

1) Accurate predictions of ship airwake

2) Analytical tool for offline airwake evaluation

3) Manned flight simulation with validated airwakes

Manned Flight Simulation

- Rapid integration in manned flight environment
 - NAVAIR flight dynamics lab
 - Easily transitioned to high fidelity MFS
 - Retains analysis of PC-based tool

F/A-18 C/D High Fidelity Cockpit

- Background
 - Why is airwake important?
 - JSHIP
- SAFEDI
 - Goal
 - Products
 - Airwake Predictions & Validation
- Highlights
- Way Ahead

CVN Calculations

CFD Prediction: 'Full Scale' CVN 73

Predict airwake for CVNs

- Aerodynamic effect of deck and island geometry
- Fixed wing aero performance and HQ investigations
- Validation for CVN-21

- Scaled wind tunnel model
- WOD: 015/30kt

CVN Calculations

CVN 76 Animation

Interoperability

F-14 / Catapult Wake for H-60

- Concerned about jet influence on helos operating on Elevator 3
- Test article not available for "real life" testing
- CFD used as tool in flight clearance process
- The Abraham Lincoln Carrier Strike Group currently operating providing humanitarian aid to tsunami victims

- Helped out Hawkeye/F-18 air-to-air refueling team
- Argument was made that E 2 can taxi behind F-18 on cat so should not have problem flying behind it
- Demonstrated that JBD was doing its job

Ship Motion LHA and DD 963

- Developed 6 dof ship motion CFD capability
- Ship motion wind tunnel test conducted Jun/Jul 04
 DD 963, 1 dof (pitch), Pax River (4' x 3')
- LHA high sea state CFD test case

0°

Ship Motion

DD 963 Static Pitch Cases

- Static pitch: +2°, 0°, -2°
 - DD 963
 - Full scale (hull different than WT test article)
 - Also doing a motion case

Antenna Mast Airwake

Novel Modeling Techniques

• CFD results using sub-grid scale bc's

- Background
 - Why is airwake important?
 - JSHIP
- SAFEDI
 - Goal
 - Products
 - Airwake Predictions & Validation
- Highlights
- Way Ahead

Background SAFE-DI Tool

• Airwake data perturbs aircraft simulation model

Airwake Turbulence Data

 Presence of aircraft <u>does not</u> affect airwake

Aircraft Flight Simulation Model

Fully Coupled CFD Analysis

V-22 Dynamic Approach to LHĀ

Approach

NAV

- Cobalt
- Unstructured/overset
- Actuator disk with blade tracking
 - Fixed thrust target
- Fixed approach path
- WOD conditions simulate actual test event
- Results
 - Simulation completed through entire approach
 - Decent to 10 ft above deck

Fully Coupled CFD Analysis

V-22 Dynamic Approach to LHA

- Results
 - Hole cutting technique proved robust even near ship deck
 - Outwash from tandem rotors affect large portion of the flight deck

Coupled Airwake Modeling

- Joint NRC/NAVAIR test
 - Bell 412 hovering in front of land-based hangar
- Collect time history outwash data with 7 ultrasonic anemometers

- 3 freestream anemometers

NAV

Coupled Airwake Modeling

• CFD Approach

- Modeled hangar, aircraft fuselage, main and tail rotors (actuator disks)
- Performed grid density study
- Performed limited turbulence model study
- Atmospheric boundary layer effect currently under investigation

Hover Altitude (Skids AGL)	10 ft
Wind Speed	M=.00755 (~7.4 knots)
Sideslip	303°
Temperature	533° R (73° F)

* Significant portions of this work were conducted by Air Force Cadet Daniel Rowland through the HPCMO summer internship program. Lt. Rowland was mentored by Maj. Jim Forsythe during his internship.

Coupled Airwake Modeling

• Results

- Generally favorable; CFD tends to over predict outwash velocity

NAV

Coupled Airwake Modeling

49

NAV

experimental data

better for port side

-Effect of prevailing winds modeled more accurately

compares better on starboard side

anemometers

CFD

EXP

generally good

anemometers

The Way Ahead

- Concentrating on coupled ship/aircraft aero
 - Rotorcraft
 - Fixed-wing
- Looking at novel approaches to bring coupling effects into real-time simulations

 Airwake "warping"
- Continuing to build airwake databases – LHA, LHD, CVN, CVN-21, T-AKE, DDG, DDX, LCS, LHA(R)
- Continuing to improve SAFEDI Tool
 - Examining airwake integration methods
 - Human pilot modeling

Summary

Airwake Accomplishments

Questions?

Published Work

- 1. Polsky, S.A., Imber, R.D., Czerwiec, R.M. and Ghee, T.A., *A Computational and Experimental Determination of the Air Flow Around the Landing Deck of a US Navy Destroyer (DDG): Part II*, AIAA Paper 2007-4484, presented at AIAA Applied Aerodynamics Conference, Miami, FL, Jun. 2007.
- 2. Woodson, S. H. and Ghee, T. A., "A Computational and Experimental Determination of the Air Flow Around the Landing Deck of a US Navy Destroyer (DDG)", AIAA-2005-4958, June 2005.
- 3. Polsky, S.A. and Naylor, S.M., CVN Airwake Modeling and Integration: Initial Steps in the Creation and Implementation of a Virtual Burble for F-18 Carrier Landing Simulations, AIAA Paper 2005-6298, presented at AIAA Modeling and Simulation Technologies Conference, San Francisco, CA, Aug. 2005.
- 4. Polsky, S.A. and Ghee, T.A., *Application and Verification of Sub-Grid Scale Boundary Conditions for the Prediction of Antenna Wake Flowfields*, AIAA Paper 2004-4841, presented at AIAA Applied Aerodynamics Conference, Providence, RI, Aug. 2004.
- 5. Czerwiec, R.M. and Polsky, S.A., *LHA Airwake Wind Tunnel and CFD Comparison with and without Bow Flap*, AIAA Paper 2004-4832, presented at AIAA Applied Aerodynamics Conference, Providence, RI, Aug. 2004.
- 6. Polsky, S.A., *CFD Prediction of Airwake Flowfields for Ship Experiencing Beam Winds*, AIAA Paper 2003-3657, presented at 21st AIAA Applied Aerodynamics Conference, Orlando, FL June 2003.
- 7. Polsky, S.A. *Computational Study of Unsteady Ship Wake*. Presented at the AIAA Aerospace Sciences Meeting (2002-1022), Reno, Nevada,14-17 January 2002.
- 8. Advani, S.K., and Wilkinson, C.H. *Dynamic Interface Modelling and Simulation A Unique Challenge.* Presented at the RAeS Symposium, 'The Challenge of Realistic Rotorcraft Simulation', 7 8 November 2001, London, UK.
- 9. Bunnell, J.W. *An Integrated Time-Varying Airwake in a UH-60 Black Hawk Shipboard Landing Simulation*. Presented at the AIAA Modeling and Simulation Technologies Conference, Montreal, August 2001.
- 10. Wilkinson, C.H., Roscoe. M.F. & VanderVliet G.M. *Determining Fidelity Standards for the Shipboard Launch and Recovery Task.* Presented at the AIAA Modeling and Simulation Technologies Conference, Montreal, August 2001.
- 11. Roscoe, M.F., VanderVliet, G.M. & Wilkinson, C.H. *The Use of ADS-33D Useable Cue Environment Techniques For Defining Minimum Visual Fidelity Requirements*. Presented at the AIAA Modeling and Simulation Technologies Conference, Montreal, August 2001.
- 12. VanderVliet, G.M., Wilkinson, C.H. & Roscoe. M.F. Verification, Validation and Accreditation of a Flight Simulator: The JSHIP Experience. Presented at the AIAA Modeling and Simulation Technologies Conference, Montreal, August 2001.
- 13. Polsky, S.A. & Bruner, C.W.S. *A Computational Study of Unsteady Ship Airwake* Presented at NATO RTO Applied Vehicle Technology Panel Symposium on Advanced Flow Management, Loen, Norway, May 2001.
- 14. Wilkinson, C.H., VanderVliet, G.M. & Roscoe. M.F. *Modeling and Simulation of the Ship-Helicopter Environment.* Presented at the AIAA Modeling and Simulation Technologies Conference, Denver, August 2000.
- 15. Polsky, S.A., & Bruner, C.W.S. *Time-Accurate Computational Simulations of an LHA Ship Airwake.* Presented at the 18th AIAA Applied Aerodynamics Conference, Denver, Colorado, 14-17 August 2000.